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Abstract. Unmanned Aerial Systems (UAS) are quickly integrating into the Na-
tional Air Space (NAS). With the number of registered small (under 55 pounds)
UAS in the USA alone at over 1.5 million, and projected to expand rapidly, ac-
cording to the Federal Aviation Administration (FAA), safety is a pressing con-
sideration. Safe UAS integration into the NAS requires an intelligent, automated
system for UAS Traffic Management (UTM). Even more than for manned air-
craft, UTM must integrate runtime checks to ensure system safety, at the very
least to make up for the lack of humans on board to employ the common-sense
safety checks ingrained into the culture of human aviation.
We overview a candidate automated, intelligent UTM system and propose mul-
tiple integration points for runtime verification (RV) to ensure that each part of
the UTM adheres to safety requirements during operation. We write, validate,
and present patterns for formal requirements across multiple subsystems of this
UTM framework. After encoding our requirements as flight-certifiable runtime
observers in the R2U2 RV engine, we execute them in simulation across multiple
real-life test flights supplemented with simulated data to cover additional cases
that did not occur in flight. Lessons learned accompany an analysis of the efficacy
and performance of RV integration into the UTM framework.
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1 Introduction

The Federal Aviation Administration (FAA) forecasts Unmanned Aerial System (UAS)
numbers to continue to “expand rapidly” over the next 20 years with over 90% of the
growth from consumer-grade or professional-grade (non-model) UAS used for com-
mercial or research purposes [5]. Given the considerable traffic this will generate and
the pressing concern for safe integration into the National Air Space (NAS), additional
traffic management is required on top of current safety regulations [6]. A recent candi-
date for an intelligent, automated UAS Traffic Management (UTM) system addresses
these concerns [25].
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One important consideration in such an automated system is how, and where, to inte-
grate checks during system operation that continuously monitor for violations of system
safety requirements, e.g., due to unexpected environmental conditions or other scenar-
ios that could not be predicted and tested for during system design. This is especially
critical given the automated nature of the systems involved: pilots and human ground
controllers make numerous decisions in the control of commercial aircraft that serve
as a foundation for their traffic management systems but are missing from UTM. For
example, pilots regularly identify and dismiss off-nominal sensor readings and ground
controllers operate under unstated assumptions, such as that the flight plans of two air-
craft should never contain unsafe overlaps.

Runtime Verification (RV) provides checks that cyber-physical systems adhere to
their safety requirements during operation. However, much of the research into RV has
focused on increasing expressivity of monitored properties and operational reach of RV
engines. The on-board resources, overhead, operational delays, and intrusive system in-
strumentation required to run these tools are incompatible with flight certification [12].
In response, the Responsive, Realizable, Unobtrusive Unit (R2U2), was designed to
monitor sufficiently expressive properties, in real time, under hard resource constraints,
with low-to-no overhead, and without system instrumentation that would violate flight
certification [17]. Only three RV tools are flight-certifiable: R2U2, Lola [22], and Co-
Pilot [16]; R2U2’s flexible architecture was the easiest to adapt to our UTM system.

We examine the candidate UTM system [25], overviewing its design, implemen-
tation, and initial tests, e.g., with University of Iowa’s (U of I’s) Operational Perfor-
mance Laboratory’s (OPL’s) Vapor 55 UAS flying over small, nearby airspace. We map
out three subsystems where RV could be embedded within this UTM framework: on-
board the Vapor 55, on-board each Ground Control System (GCS), and within the UTM
cloud-based framework. However, the biggest bottleneck to the successful deployment
of formal methods like RV is specification of the requirements under verification [19].
Building upon the runtime specification pattern categories of [19], we detail patterns
for formal requirements specification across these subsystems and write, debug, and
validate a covering set of temporal logic specifications. Using R2U2 to create runtime
observers from this specification set, we deploy in simulation real-time RV over a set
of real-life flight tests, expanding our data set to include realistic scenarios that were
not able to be flown in real life. We examine the outputs from R2U2 and provide a
roadmap for utilizing this data to robustify the UTM framework. Our case study details
the process of RV integration for future adopters of systems like UTM.

Our contributions are as follows: (1) patterns useful for RV specifications across
a real distributed UTM implementation; (2) a method for adding a single first-order op-
erator to Mission-time Linear Temporal Logic (MLTL) specifications in an RV engine;
(3) an open set of RV benchmarks from real-world UAS/GCS telemetry data; (4) an
extensive experimental evaluation (124 specifications) of a distributed RV implementa-
tion in real-time; and (5) lessons learned from distributed RV specifications validation
and refinement for a UTM system.

The remainder of this paper is organized as follows. Section 2 gives background
information on MLTL and R2U2. Section 3 overviews the candidate UTM framework.
Our formal specifications fill Section 4, including specifications specific to the on-board
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UAS, the GCS, and the UTM’s cloud-based framework. To inform future practitioners,
we detail their organization, discuss coverage metrics, and exemplify each specification
pattern we found useful in our study. We also address the critical topic of specification
validation and debugging. Section 5 describes our test scenario and graphs the outputs
from R2U2 for specifications from six of our patterns. Section 6 concludes with lessons
learned and next steps for RV integration into the future UTM system.

2 Preliminaries

Mission-time Linear Temporal Logic For all our specifications, our chosen language is
Mission-time Linear Temporal Logic (MLTL) [11, 17]. A variant of Metric Temporal
Logic (MTL) [2], MLTL incorporates closed interval I = [a, b] time bounds over a set
of bounded natural numbers (i.e., 0 ≤ a ≤ b < +∞) on each temporal operator.

Definition 1. (MLTL Syntax [11, 17]) The syntax of an MLTL formula ϕ over a set of
atomic propositions AP is recursively defined as:

ϕ ::= true | false | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �Iϕ | ♦Iϕ | ϕ1UIϕ2 | ϕ1RIϕ2

where p ∈ AP is a Boolean atom (0/1), ϕ1 and ϕ2 are MLTL formulas, and I is a
closed-bound interval [lb, ub], where lb ≤ ub.

For any two MLTL formulas ϕ1 and ϕ2, ϕ1 ≡ ϕ2 if and only if they are seman-
tically equivalent. Since MLTL is derived from linear temporal logic (LTL), many of
the semantics are the same: false ≡ ¬true, ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), ¬(ϕ1UIϕ2) ≡
(¬ϕ1RI¬ϕ2) and ¬♦Iϕ ≡ �I¬ϕ. The only notable difference is that MLTL discards
LTL’s next (X ) operator, as it is semantically equivalent to �[1,1]ϕ [11]. A position π[i],
where (i ≥ 0) is an assignment over 2AP ; |π| represents the length of π.

Definition 2. (MLTL Semantics [11,17]) The satisfaction of an MLTL formula ϕ, over
a set of propositionsAP , by a computation/trace π starting from position i (denoted as
π, i |= ϕ) is recursively defined as:

– π, i |= true, – π, i |= p iff p ∈ π[i], – π, i |= ¬ϕ iff π, i 6|= ϕ,
– π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2,
– π, i |= ϕ1U[lb,ub]ϕ2 iff |π| ≥ i + lb and, there exists j ∈ [i + lb, i + ub] such that
π, j |= ϕ2 and for every k < j, k ∈ [i+ lb, i+ ub], π, k |= ϕ1.

Realizable Responsive Unobtrusive Unit (R2U2) Our R2U2 instrumentation uses two
of that tool’s main architectural layers: (1) signal processing and (2) temporal logic
monitors. R2U2 has implementations in hardware (FPGAs), C++, and C; we choose the
latter for embedding in the UTM. R2U2’s architecture details appear in a tool overview
[20], with additional details from past case studies in [7, 10, 13, 17, 23].

R2U2 reads relevant sensor readings off the main system bus, then passes them
through lightweight, real-time atomic checkers that filter and discretize the sensor read-
ings. Checks like “altitude < MIN” transform signals into Boolean atomics, e.g., true
or false, that populate the atomic propositions in temporal logic formulas. Each MLTL
formula encodes directly into an observer embedded on the target platform. The hier-
archical tree of inputs, filters, atomic checkers, and temporal logic formulas comprise
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an R2U2 specification observation tree. Redundant branches of the tree can be com-
bined through a pre-flight optimization step for efficiency and reducing encoding size.
For example, suppose R2U2 is implemented on a fixed-wing UAS and has two separate
specifications: (1) the UAS’s landing gear will be stowed when it is above 1,000 ft, and
(2) the UAS’s speed will be within 300mph to 400mph when above 1,000 ft. Since both
of these specifications require the altimeter reading to exceed 1,000 ft, a single Boolean
operator can be passed to both temporal logic observers.

3 UTM System Definition

In parallel with NASA’s third UTM Technical Capability Level [14], a hybrid university-
industrial team proposed an intelligent, centralized UTM for low-altitude urban envi-
ronments to coordinate UAS traffic in a safe and efficient way [25]. A high-level dia-
gram of the proposed UTM system appears in Fig. 1.
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Fig. 1: An overview of the NSF funded cloud-based UTM [25].
Ground Control Stations (GCS) connect to the UTM Cloud Server and upload their

proposed flight plan for approval. The UTM Cloud server performs pre-flight plan con-
flict detection using a dynamic geofencing algorithm [27]. The UTM then notifies the
GCS if the flight plan is rejected or approved. If rejected, the GCS should submit a new
flight plan until one is approved. When approved, the GCS streams the UAS’s telemetry
data to the server, which then performs an en route conflict prediction. If an en route
conflict is predicted, the server will alert all GCS involved of the conflict, so that they
may have enough time to submit a new flight plan and perform an avoidance maneuver.

There are many challenges to overcome before such a UTM would be incorporated
into our NAS [3,18]. For example, an ongoing research question is how to handle unco-
operative and hostile UAS in the UTM’s airspace. One assumption of this UTM is that
all UAS are non-hostile, i.e., no UAS is purposefully flying an unapproved flight plan.
However, this UTM was designed to receive telemetry data from anyone who connects
to it, regardless of flight plan status. While the details of how to maintain communi-
cation with both cooperative and uncooperative UAS is still ongoing research [24], RV
can be used within this UTM to alert the operator to the presence of uncooperative UAS.

Another ongoing research question for UTMs is whether low-altitude airspace should
be structured, e.g., with similar traffic patterns and rules as ground transportation [9].
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Regardless of which approach is used, RV can be incorporated to alert users of dan-
gerous or undesirable circumstances. For example, this UTM was developed for un-
structured airspace, so it has more general operating range specifications, such as those
that make sure that all UAS are within the UTM’s airspace. Conversely, if a structured
airspace was chosen, the structured ruleset can be formally verified using RV.

4 UTM Runtime Specifications

We first decide the types of interfaces to each UTM sub-system, then how R2U2 can be
implemented into each subsystem, to drive specification elicitation.1

4.1 UTM Sub-system I/O

UAS The UAS follows a flight plan provided by the GCS and is responsible for col-
lecting and streaming its telemetry data to the GCS. Real flight data from OPL’s Vapor
55 UAV helicopter’s [1] internal log provides the data used for analysis and evaluation.
The subset we chose is based on which signals were most useful for performing RV;
see Table 1. Table 1: Selected Output Signals from the UAS.
Signal Description Units

Pos{N,E,D} Relative positional vector (North, East,
Downward) from the home point.

{m, m, m}

Lat, Lon, Alt GPS coordinate positions. {DD, DD, MSL}
Roll, Pitch, Yaw Euler angles of the UAS. {deg, deg, deg}
P, Q, R Euler angle-rates of the UAS. {deg/s, deg/s, deg/s}
Vel{N,E,D} Velocity vector of the UAS. {m/s, m/s, m/s}
Acc{N,E,D} Acceleration vector of the UAS. {m/s2, m/s2, m/s2}
Temp, TempE1/2 Temperature of the air and motors. C
Pres Atmospheric pressure. hPa

Phase
Set of strings corresponding to preset
phases of flight.

{<undefined>, Test actuators,
Stationary, Hover, Cruise, Go to,
Stop at, In flight, Landed}

Subphase
Set of strings corresponding to preset
subphases of flight.

{Ready, Test, Takeoff, Manual,
Waypoints, Home, Landing}

FlightMode
Set of strings corresponding to
automatic and manual control.

{Automatic, Home}

RPM RPM of the main motor. –

For each UAS in the system, the number of inputs to an on-board R2U2 imple-
mentation remains constant over the entire run and is predetermined prior to runtime.
This makes implementations of R2U2 equivalent across all UAS, meaning that the time
spent creating specifications for an individual UAS remains constant. This is assuming
all UAS in a system are the same class, i.e., all single-rotor helicopter-style UAS with
similar parameters.

1 Note that the list presented is not a comprehensive list of all our specifications; the full list can
be found at http://temporallogic.org/research/DETECT2020/.

http://temporallogic.org/research/DETECT2020/
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GCS The GCS has many responsibilities within the UTM system. It is responsible for:
(1) submitting flight plans to the UTM; (2) directing and receiving telemetry data from
an inflight UAS; (3) pre-processing and transmitting any telemetry data received from
its UAS to the UTM; and (4) monitoring for any conflict alerts from the UTM. For
our case study, we look only at implementing RV to monitor (1), (2), and (4). Due to
limitations on the way the UTM’s test data was produced, i.e., the Vapor 55 was only
simulated during the UTM test, and because it would be identical to the UAS’s R2U2
implementation, we omitted (3) from the GCS’s R2U2 implementation.

Table 2: Input and Output Signals from the GCS to the UTM

Telemetry Signals
Signal GCS I/O Description Units
ID O The flight plan ID of the telemetry transmission. int

Time O
The time stamp when the GCS transmits the
telemetry to the UTM.

UNIX

wp{Lon,Lat,Alt} O
The latitude, longitude, and altitude of the
waypoint the UAS is currently flying toward.

DD/MSL

Lon, Lat, Alt O
The UAS’s measured longitude, latitude, and
altitude.

DD/MSL

Vel O The UAS’s velocity measurement. m
Ang O The UAS’s heading measurement. deg.

Flight Plan Signals
Signal GCS I/O Description Units

fp ID I
The UTM’s assigned flight plan ID for the
approved flight plan.

int

Status I The UTM’s response to the GCS’s flight plan
{Approved,
Rejected,
Replaced}

Start O The start time of the flight plan. UNIX
End O The estimated end time of the flight plan. UNIX

Phase O The type of waypoint.

{START,
STOP,

CRUISE,
HOME}

fp{Lon,Lat,Alt} O
The specific waypoint’s latitude, longitude, and
altitude.

DD/MSL

Time Filed O
The time stamp when the GCS transmitted the
flight plan to the UTM.

UNIX

A challenging aspect of the GCS is that the flight plan data must be continuously
streamed to R2U2, since flight plans that are transmitted once across the GCS to the
UTM are not saved anywhere in R2U2’s memory (see Table 2). This made formatting
R2U2’s inputs from the GCS challenging; in particular, the number of waypoints within
a GCS’s flight plan can vary. This led to NumTelem+NumFP+(NumWPsFP)(NumWP)
total inputs from a GCS to R2U2, where NumTelem is the number of telemetry in-
puts, NumFP is the number of inputs from the flight plan, NumWpsFP is the num-
ber of signals associated with each waypoint, and NumWP is the number of way-
points within the flight plan. For our specific system, NumTelem = 9, NumFP = 4,
NumWpsFP = 5, and NumWP varies between 4 and 10 waypoints.
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This variance in the number of inputs from one GCS to another led us to develop
specifications that validate across all instances of NumWP . We accomplished this by
adjusting R2U2’s pre-processing layer to iterate across a loop of all instances of one
variable (say, Phase) and determine if at least one violates a certain property. While
this is not a full-fledged first-order logic [4, 8], it leads to a mapping of multiple inputs
to a single Boolean atomic input to R2U2 and acts like a single first-order operator
to MLTL. At the sacrifice of precision, i.e., rather than knowing which exact waypoint
was violating a property, R2U2 reports if at least one input is violating a property, which
allows for easier automation and generality when incorporating R2U2 across iterative
types of inputs (i.e., varying number of waypoints).

UTM Cloud Server Since the UTM is implemented as a cloud-based, centralized
server, it is in charge of consolidating all flight plan and telemetry information and
determining whether any two UAS will conflict. Like the instances of R2U2 for the
GCS, the number of inputs for the UTM varies: once with the number of waypoints in
a flight plan and again with the number of UAS. Thus, the total number of inputs to an
instance of R2U2 for the UTM can be calculated by NumID(NumTelem+NumFP)+

(NumWPsFP)(
∑NumID

i=0 NumWP [i]), where NumID represents the total number of
flight plan IDs in the UTM and NumWP [i] is the specific number of waypoints for
flight plan i. This can lead to a large number of inputs for R2U2, i.e., 20 UAS with 4
waypoints each would be 580 inputs.

Similar to the GCS, to get traction on such a large number of inputs, we have de-
signed our specifications similar to first order logic, i.e., for all UAS a certain property
holds or there exists a UAS where a property is violated. Again, we trade expressiveness
for performance: we retain real-time performance guarantees but only promise R2U2
will immediately alert the UTM operator of a violation, not identify the specific UAS
responsible.

4.2 Coverage of Real-world Specification Types

To help organize our specifications, each one is categorized into one of six labels: (1)
operating range, (2) sensor bounds, (3) rates of change, (4) control sequences, (5) phys-
ical model relationships, and (6) inter-sensor relationships. These categories resemble
those of [19,26], though we add a level of granularity to several for ease of organization.

Operating Range Every sensor to, and variable within, a given system has an expected
operating range and should it fall below or exceed a given threshold, this may indicate
a hazardous system state. For example, the proposed centralized UTM will cover a
predefined airspace. Should a UAS stray beyond these operating limits of the UTM, an
alert will be sent to the UTM operator to inform the corresponding UAS’s GCS that
they are reaching or exceeding a safety threshold of the system.
Sensor Bounds Sensors and variables also have well defined bounds on the values
they can return. For example, a UAS should never see latitude values that are mean-
ingless (i.e., latitude measurements less than −90◦ or greater than 90◦). These types of
specifications may be used in conjunction with Operating Range specifications to help
diagnose whether there is a user error (accidentally operating outside their airspace) or
hardware failure (sensor returning bad data to the system).
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Table 3: UAS, GCS, and UTM Specifications Investigated
Name Description MLTL Specification

UAS RC 8
The difference between two consecutive
pressure Pres readings cannot exceed a
maximum rate of climb MaxPrevPres.

¬(�[0,3]¬(Pres leq MaxPrevPres∧
Pres geq MinPrevPres))

UAS IS 1

Since the altimeter and the barometer both
derive the air pressure, the error between
these two measurements of pressure will be
less than the MaxPresErr and greater
than MinPresErr.

(Pres lt MaxPresErr) ∧
(Pres gt MinPresErr)

GCS CS 7
The reference latitude LatWP and
longitude LonWP will be contained within
the set of waypoints given in the flight plan.

wpLonLat eq fpLonLat

GCS PM 2

If a telemetry stream is reporting that the
UAS’s heading Ang is between 90◦ and
180◦, then, if the UAS’s velocity Vel is
greater than 0 m/s, the UAS’s latitude Lat
should be decreasing while its longitude
Lon should be increasing.

¬(Ang eq Quad4 ∧
Vel gt Zero)∨ (Lat geq PrevLat ∧
Lon geq PrevLon)

UTM OR 11

Every UAS’s position will be bounded
within the given airspace. All latitude Lat
will be bounded between
(41.6000◦,41.6720◦).

�[0,3](Lat leq LatUB ∧
Lat geq LatLB)

UTM SB 3

Every UAS’s position will exist on Earth
GPS coordinates. All latitude Lat
measurement’s will be bounded by
(−90◦,90◦) degrees.

�[0,3](Lat leq MaxLatUB ∧
Lat geq MinLatLB)

See http://temporallogic.org/research/DETECT2020/ for a compete set of specifications.

Note that there is an implied � operator outside all of the specifications due to the
stream-based nature of R2U2 runtime observers. That is: R2U2 outputs a stream of ver-
dicts indicating whether each specification holds starting at every discretized execution
time stamp. Formally, ∀i, R2U2 gives a verdict as to whether π, i |= ϕ in the form of a
stream 〈i , verdict〉. So, even the purely propositional formulas are still asserting that a
relationship holds, e.g., throughout a flight.

Rates of Change Additionally, sensor’s and variable’s rate of change may also be
bounded. For example, a UAS will have some maximum change in velocity between
any two telemetry transmissions. Should it exceed this value, it may indicate that the
UAS’s transmission rate varied (e.g., a dropped transmission). Additionally, one could
monitor to make sure there is change between two consecutive sensor measurements, or
that the amount of variance between sensor measurements is not skewed in one direction
or another, which could mean the UAS is under a cyber-attack, such as GPS spoofing.
Control Sequences Because this system follows a rigorous series of stages, several
specifications monitor that the system is adhering to its specified control sequence. For
example, the intended sequence of states for the UTM is to: (1) receive a flight plan
from a GCS, (2) approve or reject the flight plan, (3) if approved, issue the GCS a
corresponding flight plan ID, and (4) the GCS transmits the telemetry data of the UAS

http://temporallogic.org/research/DETECT2020/
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with the corresponding flight plan ID. Many different hazardous situations can be made
by removing or rearranging this intended sequence; thus, monitoring for any out-of-
order sequences can help alert the system or the user to execute a mitigation action.
Physical Model Relationships In many systems, there exist physical relationships
between one or more combinations of sensors and actuators when commanding the
system. For example, if a UAS is commanded to accelerate, the motors should respond
accordingly to execute that command. These types of relationships can detect sensor
calibration errors and ensure that sensors agree about the system’s overall state.
Inter-sensor Relationships To help diagnose failures, some systems may be able to
invoke specifications that use multiple sensors, either of the same or different type, to
measure common values. For example, the relationship between barometric pressure
(obtained from an on-board barometer) and altitude (obtained from the GPS) allows
for more than one way to measure altitude. RV can use these types of specifications
to determine if both sensors agree. If they do not agree, then polling, or other system
health management techniques, could be used to determine the faulty sensor and switch
the primary source for the UAS altitude measurements.

4.3 Specification Validation

Because specification creation is a circular process [19], we chose to validate our list
of RV specifications in a variety of ways. The first was a Matlab-based approach where
we incorporated logged data for each subsystem into Matlab and validated the ways in
which the Boolean atomics were created. The second was by uploading our MLTL run-
time specifications for each individual subsystem into an open-source MLTL satisfiabil-
ity checker [11] to perform specification debugging via checking each specification, its
negation, and the conjunction of all specifications for satisfiability [21]. The third way
these specifications were validated was by running the pre-recorded data into the R2U2
tool chain and checking to see if the specification held true over the system trace. If it
did, we injected faults into the pre-recorded data and monitored R2U2’s output to see if
it correctly detected the faults. Of the list of 124 specifications we made for the UAS,
GCS, and UTM, Table 3 presents six specifications that we feel encapsulate interesting
properties about each subsystem.

5 Evaluation

The UTM test scenario consists of 20 UAS interacting with the UTM – OPL’s Vapor
55 hardware-in-the-loop simulation and our 19 physics-based simulated flights – with
the goal of testing the UTM’s conflict detection logic. Of the 20 flight plans, 18 were
conflict-free, one was designed to create a pre-departure conflict, and one deviated from
the pre-approved flight plan, creating an en-route conflict. During the 42 minute test,
the UTM correctly detected and alerted both GCSs of the en-route conflict, with OPL’s
GCS submitting a new, conflict-free flight plan en-route.

Although we intended to have R2U2 embedded into the UTM system for this test, in
practice this would have required enhancements to core functionalities and improving
the networking capabilities of the UTM. However, all test data was recorded and put to
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use offline in refining our specifications and implementations of R2U2 into each sub-
system. We argue that since R2U2 has previously been embedded and used in several
successful aerospace applications [7,10,13,17,23], our offline, real-time simulations of
this embedding perform representatively to an actual implementation. Note we plan to
incorporate R2U2 into the UTM system for the next test.

□[0,3] (wpLat_leq_MaxLonUB
˄

wpLat_geq_MinLonLB)
wp_eq_fp ≡ wp = = fp

□[0,3] ( wpLat_leq_LatUB
˄

wpLat_geq_LatLB)

□[0,3]  (wpLat_leq_LonUB
˄

wpLat_geq_LonLB)

□[0,3] (wpLat_leq_MaxLatUB
˄

wpLat_geq_MinLatLB)

<= 90.0 >= −90.0 <= 41.6720 >= 41.6000 wp_eq_fp = False;
for (i = 0; i < NumWP; i++)
{

if (wpLat  == fpLat[i] && 
wpLon == fpLan[i])
wp_eq_fp = True;

}

wpLatSignal 
Processing

Temporal Logic Observers

<= 180.0 >= −180.0 <= −91.4950  >= −91.5920

wpLon

GCS_OR_9 GCS_OR_10 GCS_OR_12 GCS_OR_13GCS_OR_8

Fig. 2: A small observation tree from the GCS’s R2U2 implementation. Two sensor val-
ues, wpLat and wpLon, are inputs to the signal processing layer, which pre-processes
them into Boolean atomics for the temporal logic observers.

R2U2 was hosted on a Ubuntu 18.04 LTS operating system on an Intel Core i7-
4810MQ CPU with a 2.80GHz clock and 16GB of RAM. Each subsystem of R2U2
was run independently, i.e., each subsystem was run with its own instance of R2U2
across its own input trace and no cross-platform communication was performed. Fig. 2
shows an example of how specifications are encoded into R2U2’s observations trees.

Operating Range As seen from Fig. 3, the UTM’s R2U2 monitors and reports if the
operating range bounds are satisfied for all of UAS’s latitude measurements. As the
original test data was fault-free, we injected a fault, which revealed a sudden spike in
R2U2’s output during the injected fault. This corresponds to a dropped transmission in
the original data. Thus, we refine our specification to include an overarching �[0,3] oper-
ator, which acts as a sliding window temporal filter, to suppresses such output bouncing.

Sensor Bounds Similar to Fig. 3, Fig 4 shows the UTM’s R2U2 monitoring and re-
porting if any of the UAS’s latitude measurements exceed the sensor bound threshold of
(−90◦, 90◦). Similarly, the original data was fault free, so we injected a fault into one
of the UAS’s latitude measurements. Again, testing revealed transmission losses, so we
added a �[0,3] filter to suppress any false positives triggered by missing data.

Rates of Change The pressure recorded by a UAS’s on-board barometer changes as it
ascends and descends. Thus, we developed a specification to monitor change in pres-
sure: the difference between two consecutive pressure readings are limited to ±0.4 hPa
(derived from the maximum rates of climb and descent [15]). Unlike our other spec-
ifications, Fig. 5 shows that we needed to include a conjunction of two �[0,3] filters
to remove all output bouncing: one filters outlying violating verdicts and one filters
outlying satisfying verdicts.

Control Sequence The UTM’s test scenario included one UAS deviating from its pre-
approved flight plan. Figure 7 shows R2U2 correctly detecting this real-world deviation
in real time.
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Inter-sensor Relationship The difference between the barometer’s and GPS’s pressure
should be bounded within acceptable error. A comparison of the two sensors can help
diagnose sensor failures (see [15] for more details). For example, Fig. 6 shows a side-
by-side comparison of two pressure traces: an unmodified and a modified version with
a fault injected from t = 1500 to t = 1750.

(a) OR UTM 11: Modified latitude trace (b) OR UTM 11: Unmodified latitude trace

(c) (Lat ≤ LatUB) ∧ (Lat ≥ LatLB) (d) �[0,3]((Lat ≤ LatUB) ∧ (Lat ≥ LatLB))

Fig. 3: Two instances of the UTM’s R2U2 monitoring: a modified run (a) where one UAS (pur-
ple) temporarily exceeds the operating range bounds, and an unmodified run (b) where all UAS
lie within the operating range (dashed lines). Both fault-injected runs show R2U2 identifies the
corresponding violation of the specification; however, the output of the purely Boolean formula
(c) bounces due to a missed telemetry transmission. To avoid a false positive, due to missing data,
we add a temporal logic filter (d) that monitors for multiple subsequent nominal data sequences.

(a) SB UTM 3: Modified latitude trace (b) SB UTM 3: Unmodified latitude trace

(c) (Lat ≤ MaxLatUB)∧
(Lat ≥ MinLatLB)

(d) �[0,3]((Lat ≤ MaxLatUB)∧
(Lat ≥ MinLatLB))

Fig. 4: Like Fig. 3, the top graphs show modified (a) and unmodified (b) input traces. Similarly,
dropped telemetry transmissions cause output bouncing (c), so a �[0,3] filter is applied (d).
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(a) RC UAS 8: Modified air pressure trace (b) RC UAS 8: Unmodified air pressure trace

(c) �[0,3]¬(Press ≤ MaxPrevPress∧
Press ≥ MinPrevPress)

(d) ¬�[0,3]¬((Press ≤ MaxPrevPress)∧
(Press ≥ MinPrevPress))∧

�[0,3]((Press ≤ MaxPrevPress)∧
(Press ≥ MinPrevPress))

Fig. 5: Two instances of the UAS’s R2U2 monitoring: (a) a modified trace where we injected
a shift in the air pressure’s rate of change, and (b) an unmodified trace where a few anomalies
exceed the pressure rate of change bounds (dashed lines). Both outputs of the fault-injected run
from R2U2 are shown; however, the output of the original formula (c) bounces due to noisy input
jumping back within the margins. To remove this bouncing, we added another �[0,3] filter (d) to
keep the current state until all outliers are filtered and the state has unquestionably changed.

(a) IS UAS 1: Unmodified pressure sensor trace (b) IS UAS 1: Modified pressure sensor trace

(c) �[0,3]((Pres < MaxPresErr)∧
(Pres > MinPresErr))

(d) �[0,3]((Pres < MaxPresErr)∧
(Pres > MinPresErr))

Fig. 6: Two instances of the UAS’s R2U2 monitoring: an unmodified run (a) where the pres-
sure from the barometer remains within the error margins of the GPS’s calculated atmospheric
pressure (dashed lines), and a modified run (b) where the same data was injected with a fault
by subtracting 100hPa from the barometer’s atmospheric pressure reading. R2U2’s output (c)
acknowledges the error-free trace of (a), and (d) shows that R2U2 detects the violation from (b).
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Physical Model Relationship As shown in Fig. 8, when a UAS’s heading is between
90◦ and 180◦ and its velocity is non-zero, then the UAS’s latitude should be decreasing
while its longitude is increasing.

Fig. 7: The latitude (top) and longitude (middle) traces
for an adversarial UAS, showing that the GCS is com-
manding it to a different waypoint (red, dashed line) in-
stead of one from its approved flight plan (green, dotted
line). Corresponding to the violation of CS GCS 7 (Table
3), R2U2’s output (bottom) shows it successfully detects
this real-world fault.

Lessons Learned Many of our
specifications are rather simplis-
tic, i.e., �[0,3](ϕ1 ∧ ϕ2); how-
ever, their simplicity allows for
easy validation and verification.
They are easy to validate through
discussion with system design-
ers. Additionally, we used tem-
poral filters, e.g., the �[0,3] slid-
ing window filter, extensively to
mitigate false-positives. As false-
positives can cause mistrust of
the RV monitor, we built our
specifications to err on the side of
missing a fault. As seen in Sec-
tion 5, if R2U2 sent a fault alert,
the fault was clear for the hu-
man operators receiving the alert.
Many of our specifications en-
capsulate intuitive bounds and re-
lationships for sensor values and variables that humans implicitly assume about a given
system, i.e., latitude coordinates are bounded between (−90◦, 90◦) and that events can-
not end before they start. These “common-sense” specifications are often overlooked,
yet they catch real faults, e.g., from variable overflow and underflow, sensor or wiring
failures, and excessive noise. Our coverage categorization for specifications allowed us
to enumerate many such sanity checks about the UTM system, which helped us achieve
a reasonable covering set of specifications for the UTM’s three sub-systems. In practice,
this lead to R2U2 identifying a real-life fault where a data-translation error caused the
UTM to register flight plans that ended before they started. Such an error would be ob-
vious to human controllers but automated systems require RV to flag this impossibility.
Future work is aimed toward creating automated tools for specification elicitation.

6 Conclusion

Before UAS can integrate into the NAS, we need to establish a provably safe, intelli-
gent, and automated UTM system. To help facilitate this, we have integrated the state-
of-the-art runtime verification tool R2U2 across the three different layers of an actual
UTM implementation: on-board the individual UAS, in conjunction with each opera-
tor’s GCS, and embedded into a centralized, cloud-based UTM server. By validating
and releasing over 100 runtime MLTL specifications, two sets of recorded traces from
test flights of a real-life UTM implementation, and the results of checking those for-
mulas, we contribute a large benchmark suite. This suite is useful for verification of
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the algorithms and implementations of future RV tools, providing both nominal and
faulty traces and realistic sensor noise and outlier readings that challenge RV engines.

Fig. 8: Single instance of R2U2 on a simulated UAS showing
the latitude, longitude, heading, and velocity. With assumptions
of the UAS operating in North America and there is a rela-
tionship between heading and trajectory, then a relationship be-
tween velocity, heading, and position can be verified.

Additionally, we exemplify
the real-world challenges
of implementing RV into
a centralized, high-traffic
UTM. We demonstrate real-
time performance of ex-
tending MLTL formulas
with a single first-order
operator, where we vali-
date whether a specifica-
tion holds for all UAS or if
there exists a UAS that vio-
lates a specification. When
refining our specification
set, we found sensor noise
and outliers triggered false
positives and that a sim-
ple �[0,3] around each criti-
cal sensor check eliminated
these while only slightly
delaying the trigger of actual faults. Of our 124 specifications, two-thirds contain this
construct. This modification can be automatically inserted into specifications for real-
life systems where false positives cannot be tolerated. Though we verified a short (42
minute) relatively small real-life system (26, 33-64, and 634 sensor inputs for the UAS,
GCS, and UTM, respectively) we still found it hard to manually write a sufficiently cov-
ering set of specifications. To ensure we did not miss covering unstated assumptions,
we used coverage metrics to brainstorm our list of 124 specifications: variable coverage
(every variable appears in at least one specification) and pattern coverage (specifications
follow each pattern from [19]). Our experience informs an on-going project to enable
more automated specification elicitation.
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