
NASA/TM–2015–218817

Intelligent Hardware-Enabled
Sensor and Software Safety and
Health Management for
Autonomous UAS

PI: Kristin Y. Rozier
civil servant, NASA Ames Research Center, Moffett Field, CA 94035, USA

Co-I: Johann Schumann
SGT, Inc., NASA Ames Research Center, Moffett Field, CA 94035, USA

Co-I: Corey Ippolito
civil servant, NASA Ames Research Center, Moffett Field, CA 94035, USA

May 2015

NASA STI Program . . . in Profile

Since its founding, NASA has been
dedicated to the advancement of
aeronautics and space science. The
NASA scientific and technical
information (STI) program plays a key
part in helping NASA maintain this
important role.

The NASA STI Program operates
under the auspices of the Agency Chief
Information Officer. It collects,
organizes, provides for archiving, and
disseminates NASA’s STI. The NASA
STI Program provides access to the
NTRS Registered and its public
interface, the NASA Technical Reports
Server, thus providing one of the
largest collections of aeronautical and
space science STI in the world. Results
are published in both non-NASA
channels and by NASA in the NASA
STI Report Series, which includes the
following report types:

• TECHNICAL PUBLICATION.
Reports of completed research or a
major significant phase of research
that present the results of NASA
programs and include extensive data
or theoretical analysis. Includes
compilations of significant scientific
and technical data and information
deemed to be of continuing reference
value. NASA counterpart of
peer-reviewed formal professional
papers, but having less stringent
limitations on manuscript length and
extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that
are preliminary or of specialized
interest, e.g., quick release reports,
working papers, and bibliographies
that contain minimal annotation.
Does not contain extensive analysis.

• CONTRACTOR REPORT.
Scientific and technical findings by
NASA-sponsored contractors and
grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,
seminars, or other meetings
sponsored or co-sponsored by NASA.

• SPECIAL PUBLICATION.
Scientific, technical, or historical
information from NASA programs,
projects, and missions, often
concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION.
English- language translations of
foreign scientific and technical
material pertinent to NASA’s
mission.

Specialized services also include
organizing and publishing research
results, distributing specialized
research announcements and feeds,
providing information desk and
personal search support, and enabling
data exchange services.

For more information about the NASA
STI Program, see the following:

• Access the NASA STI program home
page at http://www.sti.nasa.gov

• E-mail your question to
help@sti.nasa.gov

• Phone the NASA STI Help Desk at
757-864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681–2199

NASA/TM–2015–218817

Intelligent Hardware-Enabled
Sensor and Software Safety and
Health Management for
Autonomous UAS

PI: Kristin Y. Rozier
civil servant, NASA Ames Research Center, Moffett Field, CA 94035, USA

Co-I: Johann Schumann
SGT, Inc., NASA Ames Research Center, Moffett Field, CA 94035, USA

Co-I: Corey Ippolito
civil servant, NASA Ames Research Center, Moffett Field, CA 94035, USA

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

May 2015

Acknowledgments

We thank our student interns and collaborators for their invaluable contributions to
this project. Thanks to: Johannes Geist (M.S. Research Intern, University of Applied
Sciences Tecnikum Wien, Austria); Chetan S. Kulkarni (Research Engineer, SGT,
Inc., NASA Ames Research Center, Moffett Field, CA); Eddy Mazmanian (civil
servant, NASA Ames Research Center, Moffett Field, CA); Patrick Moosbrugger
(M.S. Research Intern, University of Applied Sciences Tecnikum Wien, Austria);
Quoc-Sang Phan (Ph.D. Research Intern, Queen Mary University of London, UK);
Thomas Reinbacher (Ph.D. Research Intern, Vienna University of Technology,
Austria); Indranil Roychoudhury (Computer Scientist, SGT, Inc., NASA Ames
Research Center, Moffett Field, CA); Iyal Suresh (sophomore Undergraduate Intern,
University of California, Los Angeles).

The project team worked closely with members of the airborne science group at NASA
Ames Research Center in Code SG. We would like to give special thanks to Matt
Fladeland (ARC/SG), Ric Kolyer (ARC/SG), Bruce Storms (ARC/AOX), and the
rest of the Dragon Eye team who we collaborated with for modification and flight
testing of the NASA Dragon Eye aircraft systems.

The use of trademarks or names of manufacturers in this report is for accurate reporting and
does not constitute an offical endorsement, either expressed or implied, of such products or
manufacturers by the National Aeronautics and Space Administration.

This report is available in electronic form at
http://research.kristinrozier.com/R2U2/NASA TM FinalReport.pdf

Abstract

Unmanned Aerial Systems (UAS) can only be deployed if they can ef-
fectively complete their mission and respond to failures and uncertain
environmental conditions while maintaining safety with respect to other
aircraft as well as humans and property on the ground. We propose
to design a real-time, onboard system health management (SHM) ca-
pability to continuously monitor essential system components such as
sensors, software, and hardware systems for detection and diagnosis of
failures and violations of safety or performance rules during the flight of
a UAS. Our approach to SHM is three-pronged, providing: (1) real-time
monitoring of sensor and software signals; (2) signal analysis, prepro-
cessing, and advanced on-the-fly temporal and Bayesian probabilistic
fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power
hardware realization using Field Programmable Gate Arrays (FPGAs)
in order to avoid overburdening limited computing resources or costly
re-certification of flight software due to instrumentation. No currently
available SHM capabilities (or combinations of currently existing SHM
capabilities) come anywhere close to satisfying these three criteria yet
NASA will require such intelligent, hardwareenabled sensor and software
safety and health management for introducing autonomous UAS into
the National Airspace System (NAS). We propose a novel approach of
creating modular building blocks for combining responsive runtime mon-
itoring of temporal logic system safety requirements with model-based
diagnosis and Bayesian network-based probabilistic analysis. Our pro-
posed research program includes both developing this novel approach and
demonstrating its capabilities using the NASA Swift UAS as a demon-
stration platform.

1

Contents

1 Introduction 9

2 Temporal-Logic Based Runtime Observer Pairs for Sys-
tem Health Management of Real-Time Systems [39] 13

2.1 Introduction . 13

2.1.1 Related Work . 14

2.1.2 Approach and Contributions 15

2.2 Real-time projections of LTL 17

2.3 Asynchronous and Synchronous Observers 18

2.3.1 Asynchronous Observers 19

2.3.2 Synchronous Observers 24

2.4 Mapping Observers into Efficient Hardware 25

2.4.1 Synthesizing a Configuration for the rt-R2U2 . . . 26

2.4.2 Circuit Size and Depth Complexity Results 27

2.5 Applying the rt-R2U2 to NASA’s Swift UAS 27

2.6 Conclusion . 29

3 Runtime Observer Pairs and Bayesian Network Reason-
ers On-board FPGAs: Flight-Certifiable System Health
Management for Embedded Systems [21] 31

3.1 Introduction . 31

3.1.1 Related Work . 33

3.1.2 Contributions . 34

3.2 Preliminaries . 34

3.2.1 Temporal-Logic Based Runtime Observer Pairs [39] 34

3.2.2 Bayesian Networks for Health Models 36

3.2.3 Digital Design 101 and FPGAs 37

3.3 System Overview . 38

3.3.1 Software . 39

3.3.2 Hardware . 39

3.4 FPGA implementation of MTL/mission-time LTL 40

3.5 FPGA implementation of Bayesian Networks 42

3.6 Case Study: Fluxgate Magnetometer Buffer Overflow . . . 43

3.6.1 The Bayesian Health Model 44

3.7 Conclusion . 47

2

4 UAS Platforms and Integration 51
4.1 Architecture and Implementation 51

4.1.1 Initial Work: Swift UAS and Beyond 51
4.1.2 Arduino-based DragonEye 54
4.1.3 Hardware Components for rt-R2U2 56
4.1.4 Instrumentation of Flight Software 58

4.2 Risk Analysis . 62
4.2.1 Risks and Mitigation—Introduction 63
4.2.2 Intended Flight Profiles 63
4.2.3 Structure of Risks 65

4.3 Hardware Integration . 66
4.4 Initial Flight Tests . 67

4.4.1 Results of Initial Stand Flight Tests 68

5 Conclusion 73
A Proofs of Correctness . 81
B Proofs of Complexity Results 96
C Simulation Results . 100
D Detailed Risk Analysis . 104

D.1 Risks and Mitigation—Mechanical 104
D.2 Risks and Mitigation—Power 104
D.3 Risks and Mitigation—Thermal 105
D.4 Risks and Mitigation—EMI and Signal Interference 106
D.5 Risks and Mitigation—FSW Interference 106
D.6 Risks and Mitigation—Operational 109

E Software Annotations for ArduPlane 110
E.1 Modified Files . 110

F List of Publications and Presentations 114
F.1 Publications . 114
F.2 Presentations . 114

3

4

List of Figures

2.1 rt-R2U2 framework . 16

2.2 hardware implementation and subformulas of AST(ξ) . . 30

2.3 Adding SHM to the Swift UAS 30

3.1 A: BN for Health management. B: Arithmetic circuit . . 36

3.2 Simplified representation of a modern FPGA architecture. 38

3.3 rt-R2U2 software tool chain 39

3.4 A: Overview of the rt-R2U2 architecture. B: FSM for the
ftObserver. 40

3.5 A: A computing block and its three modes of operation.
B: Internals of a computing block. 42

3.6 Bayesian Network for our example with legend of health
nodes. 45

3.7 A, B, C: posterior probabilities (lighter shading corre-
sponds to values closer to 1.0) for different input conditions. 45

3.8 Recorded traces: sensor signals (left), trace of S1 . . . S3

(right). 46

4.1 NASA UAS Candidates for Flight Testing 53

4.2 Ironbird ground test system for modified Dragon Eyes . . 55

4.3 Ground simulation and testing system for the Viking 400
UAS . 56

4.4 DragonEye Schematic with Parallella Board Payload . . . 57

4.5 DragonEye Schematic with Parallella Board Payload: Green
elements display changed to standard DragonEye configu-
ration made to incorporate rt-R2U2. 58

4.6 RC and SW Failsafe . 59

4.7 Parallella Board Size: 3.4” x 2.15” Weight: 64.9 g 59

4.8 High-level architecture with read-only connection between
FSW and rt-R2U2 . 60

4.9 Software Architecture . 60

4.10 SW architecture details 62

4.11 Risk assessment from DOT [47] showing risk assessment
levels (high–red, moderate–yellow, low–green) over likeli-
hood vs. Consequence . 63

4.12 Overview of flight risks . 65

5

4.13 Indoor flight test photos from NASA Ames Building N-211-
E: six airframes were modified and tested for this project
in collaboration with NASA Ames Code SG 66

4.14 Photos of Parallella board integration in a DragonEye UAS
from the series of indoor test-stand flight tests. 67

4.15 Photos from series of indoor test-stand flight tests. 68
4.16 Development of chip temperature (y-axis) over time (x-

axis, in seconds). Computer compartment closed, engines
off, no airflow along the aircraft. 69

4.17 Temporal traces of airspeed (left), altitude (middle) and
data related to software tasks in the APM (right) 70

4.18 Values of time stamps as produced by the temporal rea-
soner. A reset of time stamp values seem to have occurred
around record number 3,300 through 3,700. 70

4.19 Output of four temporal monitors 71

B1 Mapping of synchronous MTL observers to circuits of two-
input gates. 98

C1 Hardware simulation traces for a complete test-flight data
of the Swift UAS. 102

C2 A section (laser altimeter outage) of the simulation traces
with health assessment. 103

6

List of Tables

3.1 Signals and sources used in this health model, sampled
with a 1Hz sampling rate 44

3.2 Data of health nodes (right) reflecting the buffer overflow
situation shown in 3.7A. 46

3.3 Temporal formula specifications that are translated into
paired runtime observers for the fluxgate magnetometer
(FG) health model . 49

4.1 Viking-400 UAS Specifications 52
4.2 DragonEye UAS Specifications 54
4.3 Levels for likelihood . 63
4.4 Levels for schedule . 64

A1 Enumeration of input combinations, expected results, and
outputs of Algorithm 10. For brevity, we use the abbre-
viations: ϕ = Tϕ.v, ψ = Tψ.v, and write 0 for false, 1 for
true, and ? for maybe. qϕ is set “1” iff qϕ = () and qψ is
set “1” iff qψ = (). 86

C1 Interpretation of the simulation signals in Fig. C1 and
Fig. C2: RTC = Real Time Clock 101

E2 Current variables monitored 112
E3 #defines to control rt-R2U2 monitoring 113

7

8

Chapter 1

Introduction

Unmanned Aerial Systems (UAS) can only be deployed if they can
effectively complete their mission and respond to failures and uncertain
environmental conditions while maintaining safety with respect to other
aircraft as well as humans and property on the ground. In particular
in situations, where there is no link to the ground or the UAS must
fly autonomously, on-board software and hardware is responsible for
controlling and guiding the UAS in a safe and effective manner. Failures
and deviations must be detected and mitigation actions initiated.

In this project, we have designed a real-time, onboard system health
management (SHM) capability to continuously monitor essential system
components such as sensors, software, and hardware systems for detection
and diagnosis of failures and violations of safety or performance rules
during the flight of a UAS. To provide assurance that a UAS will not
cause any harm during its missions, we designed a SHM framework
that operates aboard a low-cost, dedicated, and separate FPGA (Field-
Programmable Gate Array). We name our framework rt-R2U2 after
these constraints:

real-time: SHM must detect and diagnose faults in real time during any
mission.
Realizable: We must utilize existing on-board hardware (here an
FPGA) providing a generic interface to connect a wide variety of sys-
tems to our plug-and-play framework that can efficiently monitor dif-
ferent requirements during different mission stages, e.g., deployment,
measurement, and return. New specifications do not require lengthy
re-compilation and we use an intuitive, expressive specification language;
we require real-time projections of Linear Temporal Logic (LTL) since
operational concepts for UAS and other autonomous vehicles are most
frequently mapped over timelines.

Responsive: We must continuously monitor the system, detecting any
deviations from the specifications within a tight and a priori known
time bound and enabling mitigation or rescue measures. This includes
reporting intermediate status and satisfaction of timed requirements as

9

early as possible and utilizing them for efficient decision making.
Unobtrusive: We must not alter any crucial properties of the system,
use commercial-off-the-shelf (COTS) components to avoid altering cost,
and above all not alter any hardware or software components in such
a way as to lose flight-certifiability, which limits us to read-only access
to the data from COTS components. In particular, we must not alter
functionality, behavior, timing, time or budget constraints, or tolerances,
e.g., for size, weight, power, or telemetry bandwidth.
Unit : The rt-R2U2 is a self-contained unit.

Our approach to modeling system and software health is three-pronged,
based upon (1) real-time analysis of sensor and software signals, (2) ad-
vanced on-the-fly temporal processing, and (3) Bayesian probabilistic
fault diagnosis. All the components of our framework have been inte-
grated into an FPGA design; read-only data connections connect to the
system buses and flight computer, assuring up-to-date data values while
minimizing any interference to other components on-board the UAS.

Existing monitoring methods, like Runtime Verification (RV), assess
the system status via software instrumentation and checking the current
state against a formal specification. Because software instrumentation
makes re-certification of the flight software onerous, alter the original
timing behavior, or increase resource consumption, an RV approach is
not feasible. In addition, RV only checks if a test against the specification
has passed or failed.

In our approach developed within this projects, we go ways beyond RV
by synergistically combining temporal logic and Bayesian diagnostic rea-
soning. UAS often need to adhere to timing-related rules like: R1 :“after
receiving the command ’takeoff’ reach an altitude of 600 ft within five
minutes.” These flight rules can be easily expressed in temporal logics;
often in some flavor of linear temporal logic (LTL). Mainly due to promis-
ing complexity results, restrictions of LTL to its past-time fragment have
most often been used for RV. Though specifications including past time
operators (e.g., “the IR sensor must have been powered up at least 5
minutes prior to takeoff”) may be natural for some other domains, flight
rules require future-time reasoning. We developed efficient temporal
observer pairs to process LTL specifications containing past-time and
future-time operators.

Often, a given failure situation might be attributed to different causes.
For example, an erroneous altitude reading might have been caused by
a faulty barometric altitude sensor (e.g., blocked Pitot tube), a mal-
functioning laser altimeter, or some problem in the flight software. On-
the-spot statistical diagnosis is important for root cause analysis: which
component(s) most likely caused the current situation. For this kind of
diagnostic reasoning, we are using Bayesian networks. We have developed
a method for efficient reasoning inside the FPGA.

Each of the components of rt-R2U2 have been developed and put into
an FPGA design. The FPGA hardware has been integrated—for testing

10

and evaluation purposes—into a NASA DragonEye UAS.
This report is structured as follows: the next two chapters describe

in detail the temporal processing (Chapter 2) and the Bayesian diag-
nostic reasoning (Chapter 3). Theoretical background, related work,
implementation, and results of case studies on existing flight data of the
NASA Swift UAS will be presented. These two chapters are pre-prints of
publications [40] and [21]; thus the text contains some overlaps.

Chapter 4 covers the implementation of our framework onto a Paral-
lella FPGA board and integration into the DragonEye UAS. This UAS
has been equipped with the open-source ArduPlane flight software. For
preparation of flight tests, we performed a detailed risk analysis, describe
the hardware integration and initial flight tests.

Chapter 5 discusses future work and concludes. Several appendices
contain correctness and complexity proofs for the temporal observers
(Appendix A, B), detailed simulation results (Appendix C), details of
the risk analysis (Appendix D), the list of monitored software variables
(Appendix E), and a detailed list of publications and presentations of
this project (Appendix F).

11

12

Chapter 2

Temporal-Logic Based
Runtime Observer Pairs for
System Health
Management of Real-Time
Systems [39]

2.1 Introduction

1 Autonomous and automated systems, including Unmanned Aerial Sys-
tems (UAS), rovers, and satellites, have a large number of components,
e.g., sensors, actuators, and software, that must function together reliably
at mission time. System Health Management (SHM) [24] can detect,
isolate, and diagnose faults and possibly initiate recovery activities on
such real-time systems. Effective SHM requires assessing the status of
the system with respect to its specifications and estimating system health
during mission time. Johnson et al. [24, Ch.1] recently highlighted the
need for new, formal-methods based capabilities for modeling complex
relationships among different sensor data and reasoning about timing-
related requirements; computational expense prevents the current best
methods for SHM from meeting operational needs.

We need a new SHM framework for real-time systems like the Swift [23]
electric UAS (see Fig. 2.1), developed at NASA Ames. SHM for such
systems requires:

Responsiveness: the SHM framework must continuously monitor the
system. Deviations from the monitored specifications must be detected
within a tight and a priori known time bound, enabling mitigation or
rescue measures, e.g., a controlled emergency landing to avoid damage
on the ground. Reporting intermediate status and satisfaction of timed

1The material in this chapter is published in [39].

13

requirements as early as possible is required for enabling responsive
decision-making.

Unobtrusiveness: the SHM framework must not alter crucial properties
of the system including functionality (not change behavior), certifiability
(avoid re-certification of flight software/hardware), timing (not interfere
with timing guarantees), and tolerances (not violate size, weight, power,
or telemetry bandwidth constraints). Utilizing commercial-off-the-shelf
(COTS) and previously proven system components is absolutely required
to meet today’s tight time and budget constraints; adding the SHM
framework to the system must not alter these components as changes
that require them to be re-certified cancel out the benefits of their use.
Our goal is to create the most effective SHM capability with the limitation
of read-only access to the data from COTS components.

Realizability: the SHM framework must be usable in a plug-and-play
manner by providing a generic interface to connect to a wide variety
of systems. The specification language must be easily understood and
expressive enough to encode e.g. temporal relationships and flight rules.
The framework must adapt to new specifications without a lengthy re-
compilation. We must be able to efficiently monitor different requirements
during different mission stages, like takeoff, approach, measurement, and
return.

2.1.1 Related Work

Existing methods for Runtime Verification (RV) [6] assess system status
by automatically generating, mainly software-based, observers to check
the state of the system against a formal specification. Observations in
RV are usually made accessible via software instrumentation [22]; they
report only when a specification has passed or failed. Such instrumen-
tation violates our requirements as it may make re-certification of the
system onerous, alter the original timing behavior, or increase resource
consumption [36]. Also, reporting only the outcomes of specifications
violates our responsiveness requirement.

Systems in our applications domain often need to adhere to timing-
related rules like: after receiving the command ’takeoff’ reach an altitude
of 600ft within five minutes. These flight rules can be easily expressed
in temporal logics; often in some flavor of linear temporal logic (LTL),
as studied in [9]. Mainly due to promising complexity results [8, 16],
restrictions of LTL to its past-time fragment have most often been used for
RV. Though specifications including past time operators may be natural
for some other domains [26], flight rules require future-time reasoning.
To enable more intuitive specifications, others have studied monitoring
of future-time claims; see [30] for a survey and [7, 16, 20, 29, 45, 46] for
algorithms and frameworks. Most of these observer algorithms, however,
were designed with a software implementation in mind and require a
powerful computer. There are many hardware alternatives, e.g. [18],

14

however all either resynthesize monitors from scratch or exclude checking
real-time properties [4]. Our unique approach runs the logic synthesis
tool once to synthesize as many real-time observer blocks as we can fit on
our platform, e.g., FPGA or ASIC; our Sec. 2.4.1 only interconnects these
blocks. Others have proposed using Bayesian inference techniques [15]
to estimate the health of a system. However, modeling timing-related
behavior with dynamic Bayesian networks is very complex and quickly
renders practical implementations infeasible.

2.1.2 Approach and Contributions

We propose a new paired-observer SHM framework allowing systems like
the Swift UAS to assess their status against a temporal logic specification
while enabling advanced health estimation, e.g., via discrete Bayesian
networks (BN) [15] based reasoning. This novel combination of two
approaches, often seen as orthogonal to each other, enables us to check
timing-related aspects with our paired observers while keeping BN health
models free of timing information, and thus computationally attractive.
Essentially, we can enable better real-time SHM by utilizing paired
temporal observers to optimize BN-based decision making. Following our
requirements, we call our new SHM framework for real-time systems a
rt-R2U2 (real-time, Realizable, Responsive, Unobtrusive Unit).

Our rt-R2U2 synthesizes a pair of observers for a real-time specifi-
cation ϕ given in Metric Temporal Logic (MTL) [2] or a specialization
of LTL for mission-time bounded characteristics, which we define in
Sec. 2.2. To ensure Responsiveness of our rt-R2U2, we design two
kinds of observer algorithms in Sec. 2.3 that verify whether ϕ holds at
a discrete time and run them in parallel. Synchronous observers have
small hardware footprints (max. eleven two-input gates per operator; see
Theorem 3 in Sec. 2.4) and return an instant, three-valued abstraction
{true, false,maybe}) of the satisfaction check of ϕ with every new tick
of the Real Time Clock (RTC) while their asynchronous counterparts
concretize this abstraction at a later, a priori known time. This unique
approach allows us to signal early failure and acceptance of every spec-
ification whenever possible via the asynchronous observer. Note that
previous approaches to runtime monitoring signal only specification fail-
ures; signaling acceptance, and particularly early acceptance is unique
to our approach and required for supporting other system components
such as prognostics engines or decision making units. Meanwhile, our
synchronous observer’s three-valued output gives intermediate informa-
tion that a specification has not yet passed/failed, enabling probabilistic
decision making via a Bayesian Network as described in [43].

We implement the rt-R2U2 in hardware as a self-contained unit, which
runs externally to the system, to support Unobtrusiveness; see Sec. 2.4.
Safety-critical embedded systems often use industrial, vehicle bus systems,
such as CAN and PCI, interconnecting hardware and software components,

15

Event
Capture
& RTC

Runtime
Observers

sy
st

em
st

at
u

s

Higher
Level

Reasoning h
ea

lt
h

es
ti

m
a
ti

o
n

event updates

en ⊧ {ϕ1, .., ϕn}

Health
Model
(BN)

Specifi-
cation
(ϕ)

Swift UAS

Common Bus Interface

Laser
Alti-

meter

IMU &
GPS

Radio
Link

Baro
Alti-

meter

Flight
Com-
puter

. . .

. . .

rt-
R2U2

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

en ⊧ (alt ≥ 600ft)

en ⊧ (pitch ≥ 5○)

en ⊧ (cmd == takeoff)

Figure 2.1: rt-R2U2: An instance of our SHM framework rt-R2U2 for
the NASA Swift UAS. Swift subsystems (top): The laser altimeter maps
terrain and determines elevation above ground by measuring the time
for a laser pulse to echo back to the UAS. The barometric altimeter
determines altitude above sea level via atmospheric pressure. The inertial
measurement unit (IMU) reports velocity, orientation (yaw, pitch, and
roll), and gravitational forces using accelerometers, gyroscopes, and
magnetometers. Running example (bottom): predicates over Swift UAS
sensor data on execution e; ranging over the readings of the barometric
altimeter, the pitch sensor, and the takeoff command received from the
ground station; n is the time stamp as issued by the Real-Time-Clock.

see Fig 2.1. Our rt-R2U2 provides generic read-only interfaces to these bus
systems supporting our Unobtrusiveness requirement and sidestepping
instrumentation. Events collected on these interfaces are time stamped by
a RTC; progress of time is derived from the observed clock signal, resulting
in a discrete time base N0. Events are then processed by our runtime
observer pairs that check whether a specification holds on a sequence of
collected events. Other RV approaches for on-the-fly observers exhibit
high overhead [19, 27, 38] or use powerful database systems [5], thus,
violate our requirements.

To meet our Realizability requirement, we design an efficient,
highly parallel hardware architecture, yet keep it programmable to adapt
to changes in the specification. Unlike existing approaches, our observers
are designed with an efficient hardware implementation in mind, there-
fore, avoid recursion and expensive search through memory and aim at
maximizing the benefits of the parallel nature of hardware. We syn-
thesize rt-R2U2 once and generate a configuration, similar to machine
code, to interconnect and configure the static hardware observer blocks
of rt-R2U2, adapting to new specifications without running CAD or

16

compilation tools like previous approaches. UAS have very limited band-
width constraints; transferring a lightweight configuration is preferable
to transferring a new image for the whole hardware design. The checks
computed by these runtime observers represent the system’s status and
can be utilized by a higher level reasoner, such as a human operator,
Bayesian network, or otherwise, to compute a health estimation, i.e., a
conditional probability expressing the belief that a certain subsystem
is healthy, given the status of the system. In this chapter, we compute
these health estimations by adapting the BN-based inference algorithms
of [15] in hardware. Our contributions include synthesis and integration
of the synchronous/asynchronous observer pairs, a modular hardware
implementation, and execution of a proof-of-concept rt-R2U2 running on
a self-contained Field Programmable Gate Array (FPGA) (Sec. 2.5).

2.2 Real-time projections of LTL
MTL replaces the temporal operators of LTL with operators that respect
time bounds [2].

Discrete-Time MTL For atomic proposition σ ∈ Σ, σ is a formula.
Let time bound J = [t, t′] with t, t′ ∈ N0. If ϕ and ψ are formulas, then
so are:

¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | Xϕ | ϕ UJ ψ | �Jϕ | ♦Jϕ.

Time bounds are specified as intervals: for t, t′ ∈ N0, we write [t, t′] for
the set {i ∈ N0 | t ≤ i ≤ t′}. We use the functions min,max, dur, to
extract the lower time bound (t), the upper time bound (t′), and the
duration (t′ − t) of J . We define the satisfaction relation of an MTL
formula as follows: an execution e = (sn) for n ≥ 0 is an infinite sequence
of states. For an MTL formula ϕ, time n ∈ N0 and execution e, we define
ϕ holds at time n of execution e, denoted en |= ϕ, inductively as follows:

en |= true is true, en |= σ iff σ holds in sn,
en |= ¬ϕ iff en 6|=ϕ, en |= X ϕ iff en+1 |= ϕ,
en |= ϕ ∧ ψ iff en |= ϕ and en |= ψ,
en |= ϕ UJ ψ iff ∃i(i ≥ n) : (i− n ∈ J ∧ ei |= ψ∧

∀j(n ≤ j < i) : ej |= ϕ).

With the dualities ♦Jϕ ≡ true UJ ϕ and ¬♦J¬ϕ ≡ �J ϕ we arrive
at two additional operators: �J ϕ (ϕ is an invariant within the future
interval J) and ♦Jϕ (ϕ holds eventually within the future interval J). In
order to efficiently encode specifications in practice, we introduce two
special cases of �J ϕ and ♦Jϕ: τϕ ≡ �[0,τ] ϕ (φ is an invariant within
the next τ time units) and τϕ ≡ ♦[0,τ]ϕ (φ holds eventually within the
next τ time units). For example, the flight rule from Sec. 2.1, “After
receiving the takeoff command reach an altitude of 600ft within five
minutes,” is efficiently captured in MTL by (cmd == takeoff)→ 5(alt ≥

17

600ft), assuming a time-base of one minute and the atomic propositions
(alt ≥ 600ft) and (cmd == takeoff) as in Fig. 2.1.

Systems in our application domain are usually bounded to a certain
mission time. For example, the Swift UAS has a limited air-time, de-
pending on the available battery capacity and predefined waypoints. We
capitalize on this property to intuitively monitor standard LTL require-
ments using a mission-time bounded projection of LTL.

Mission-Time LTL For a given LTL formula ξ and a mission time
tm ∈ N0, we denote by ξm the mission-time bounded equivalent of ξ,
where ξm is obtained by replacing every �ϕ, ♦ϕ, and ϕ U ψ operator in
ξ by the τϕ, τϕ, and ϕ UJ ψ operators of MTL, where J = [0, tm] and
τ = tm.

Inputs to rt-R2U2 are time-stamped events, collected incrementally from
the system.

Execution Sequence An execution sequence for an MTL formula ϕ,
denoted by 〈Tϕ〉, is a sequence of tuples Tϕ = (v, τe) where τe ∈ N0 is a
time stamp and v ∈ {true, false,maybe} is a verdict.

We use a superscript integer to access a particular element in 〈Tϕ〉,
e.g., 〈T 0

ϕ〉 is the first element in execution sequence 〈Tϕ〉. We write
Tϕ.τe to access τe and Tϕ.v to access v of such an element. We say Tϕ
holds if Tϕ.v is true and Tϕ does not hold if Tϕ.v is false. For a given
execution sequence 〈Tϕ〉 = 〈T 0

ϕ〉, 〈T 1
ϕ〉, 〈T 2

ϕ〉, 〈T 3
ϕ〉, . . . , the tuple accessed

by 〈T iϕ〉 corresponds to a section of an execution e as follows: for all times
n ∈ [〈T i−1

ϕ 〉.τe + 1, 〈T iϕ〉.τe], en |= ϕ in case 〈T iϕ〉.v is true and en 6|=ϕ in
case 〈T iϕ〉.v is false. In case 〈T iϕ〉 is maybe, neither en |= ϕ nor en 6|=ϕ is
defined.

In the remainder of this report, we will frequently refer to execution se-
quences collected from the Swift UAS as shown in Fig. 2.1. The predicates
shown are atomic propositions over sensor data in our specifications and
are sampled with every new time stamp n issued by the RTC. For example,
〈Tpitch≥5◦〉 = ((false, 0), (false, 1), (false, 2), (true, 3), . . . , (true, 17),
(true, 18)) describes en |= (pitch ≥ 5◦) sampled over n ∈ [0, 18] and
〈Tpitch≥5◦〉 holds 19 elements.

2.3 Asynchronous and Synchronous Observers
The problem of monitoring a real-time specification has been studied
extensively in the past; see [10, 30] for an overview. Solutions include:
(a) translating the temporal formula into a finite-state automaton that
accepts all the models of the specification [16,18,20,46], (b) restricting
MTL to its safety fragment and waiting until the operators’ time bounds
have elapsed to decide the truth value afterwards [7,29], and (c) restricting
LTL to its past-time fragment [8, 16, 38]. Compiling new observers to
automata as in (a) requires re-running the logic synthesis tool to yield

18

a new hardware observer, in automaton or autogenerated VHDL code
format as described in [18], which may take dozens of minutes to complete,
violating the Realizability requirement. Observers generated by (b) are
in conflict with the Responsiveness requirement and (c) do not natively
support flight rules. Our observers provide Unobtrusiveness via a self-
contained hardware implementation. To enable such an implementation,
our design needs to refrain from dynamic memory, linked lists, and
recursion – commonly used in existing software-based observers, however,
not natively available in hardware.

Our two types of runtime observers differ in the times when new out-
puts are generated and in the resource footprints required to implement
them. A synchronous (time-triggered) observer is trimmed towards a
minimalistic hardware footprint and computes a three-valued abstrac-
tion of the satisfaction check for the specification with each tick of the
RTC, without considering events happening after the current time. An
asynchronous (event-triggered) observer concretizes this abstraction at
a later, a priori known, time and makes use of synchronization queues
to take events into account that occur after the current time.1 Our
novel parallel composition of these two observers updates the status of
the system at every tick of the RTC, yielding great responsiveness. An
inconclusive answer when we can’t yet know true/false is still beneficial
as the higher-level reasoning part of our rt-R2U2 supports reasoning with
inconclusive inputs. This allows us to derive an intermediate estimation
of system health with the option to initiate fault mitigation actions even
without explicitly knowing all inputs. If exact reasoning is required, we
can re-evaluate system health when the asynchronous observer provides
exact answers.

In the remainder of this section, we discuss2 both asynchronous
and synchronous observers for the operators ¬ϕ, ϕ ∧ ψ, τ ϕ, �J ϕ,
and ϕ UJ ψ. Informally, an MTL observer is an algorithm that takes
execution sequences as input and produces another execution sequence
as output. For a given unary operator •, we say that an observer
algorithm implements en |= •ϕ, iff for all execution sequences 〈Tϕ〉
as input, it produces an execution sequence as output that evaluates
en |= •ϕ (analogous for binary operators).

2.3.1 Asynchronous Observers

The main characteristic of our asynchronous observers is that they are
evaluated with every new input tuple and that for every generated output
tuple T we have that T.v ∈ {true, false} and T.τe ∈ [0, n]. Since verdicts
are exact evaluations of a future-time specification ϕ for each clock tick

1Similar terms have been used by others [12] to refer to monitoring with pairs of
observers that do not update with the RTC, incur delays dangerous to a UAS, and
require system interaction that violates our requirements (Sec. 2.1).

2Proofs of correctness for every observer algorithm appear in the Appendix.

19

they may resolve φ for clock ticks prior to the current time n if the
information required for this resolution was not available until n.

Our observers distinguish two types of transitions of the signals
described by execution sequences. We say transition of execution
sequence 〈Tϕ〉 occurs at time n = 〈T iϕ〉.τe + 1 iff (〈T iϕ〉.v ⊕ 〈T i+1

ϕ 〉.v) ∧
〈T i+1
ϕ 〉.v holds. Similarly, we say transition of execution sequence
〈Tϕ〉 occurs at time n = 〈T iϕ〉.τe + 1 iff (〈T iϕ〉.v ⊕ 〈T i+1

ϕ 〉.v)∧ 〈T iϕ〉.v holds
(⊕ denotes the Boolean exclusive-or). For example, transitions and

of 〈Tpitch≥5◦〉 in Fig. 2.1 occur at times 3 and 11, respectively.

2.3.1.1 Negation (¬ϕ)

The observer for ¬ϕ, as stated in Alg. 7, is straightforward: for every
input Tϕ we negate the truth value of Tϕ.v. The observer generates
(. . . , (true, 2), (false, 3), . . .).

2.3.1.2 Invariant within the Next τ Time Stamps (τ ϕ)

An observer for τ ϕ requires registers m↑ϕ and mτs with domain N0:
m↑ϕ holds the time stamp of the latest transition of 〈Tϕ〉 whereas
mτs holds the start time of the next tuple in 〈Tϕ〉. For the observer in
Alg. 8, the check m ≤ (Tϕ.τe − τ) in line 8 tests whether ϕ held for at
least the previous τ time stamps. To illustrate the algorithm, consider
an observer for 5 (pitch ≥ 5◦) and the execution in Fig. 2.1. At time
n = 0, we have m↑ϕ = 0 and since 〈T 0

pitch≥5◦〉 does not hold the output is
(false, 0). Similarly, the outputs for n ∈ [1, 2] are (false, 1) and (false, 2).
At time n = 3, a transition of 〈Tpitch≥5◦〉 occurs, thus m↑ϕ = 3. Since
the check in line 8 does not hold, the algorithm does not generate a
new output, i.e., returns (,) designating output is delayed until a later
time, which repeats at times n ∈ [4, 7]. At n = 8, the check in line
8 holds and the algorithm returns (true, 3). Likewise, the outputs for
n ∈ [9, 10] are (true, 4) and (true, 5). At n = 11, 〈T 11

pitch≥5◦〉 does not
hold and the algorithm outputs (false, 11). We note the ability of the
observer to re-synchronize its output with respect to its inputs and the
RTC. For n ∈ [8, 10], outputs are given for a time prior to n, however, at
n = 11 the observer re-synchronizes: the output (false, 11) signifies that
en 6|= 5 (pitch ≥ 5◦) for n ∈ [6, 11]. By the equivalence τ ϕ ≡ ¬ τ¬ϕ,
we immediately arrive at an observer for τ ϕ from Alg. 8 by negating
both the input and the output tuple.

2.3.1.3 Invariant within Future Interval (�J ϕ)

The observer for �J ϕ, as stated in Alg. 9, builds on an observer for

τ ϕ and makes use of the equivalence τϕ ≡ �[0,τ] ϕ. Intuitively, the
observer for τ ϕ returns true iff ϕ holds for at least the next τ time units.
We can thus construct an observer for �J ϕ by reusing the algorithm for

τ ϕ, assigning τ = dur(J) and shifting the obtained output by min(J)
time stamps into the past. From the equivalence ♦Jϕ ≡ ¬�J ¬ϕ, we

20

can immediately derive an observer for ♦J ϕ from the observer for �J ϕ.
To illustrate the algorithm, consider an observer for �5,10 (alt ≥ 600ft)
over the execution in Fig. 2.1. For n ∈ [0, 4] the algorithm returns (,),
since (〈T 0...4

alt≥600ft〉.τe − 5) ≥ 0 (line 3 of Alg. 9) does not hold. At n = 5
the underlying observer for 5 (alt ≥ 600ft) returns (false, 5), which is
transformed (by line 4) into the output (false, 0). For similar arguments,
the outputs for n ∈ [6, 9] are (false, 1), (false, 2), (false, 3), and (false, 4).
At n ∈ [10, 14], the observer for 5 (alt ≥ 600ft) returns (,). At n = 15,

5 (alt ≥ 600ft) yields (true, 10), which is transformed (by line 4) into
the output is (true, 5). Note also that Xϕ ≡ �[1,1] ϕ.

The remaining observers for the binary operators ϕ ∧ ψ and ϕ UJ ψ
take tuples (Tϕ, Tψ) as inputs, where Tϕ is from 〈Tϕ〉 and Tψ is from 〈Tψ〉.
Since 〈Tϕ〉 and 〈Tψ〉 are execution sequences produced by two different
observers, the two elements of the input tuple (Tϕ, Tψ) are not necessarily
generated at the same time. Our observers for binary MTL operators
thus use two FIFO-organized synchronization queues to buffer parts of
〈Tϕ〉 and 〈Tψ〉, respectively. For a synchronization queue q we denote by
q=() its emptiness and by |q| its size.

21

Algorithm 1 Observer for ¬ϕ.

1: At each new input Tϕ:
2: Tξ ← (¬ Tϕ.v, Tϕ.τe)
3: return Tξ

Algorithm 2 Observer for τ ϕ. Initially,
m↑ϕ = mτs = 0.

1: At each new input Tϕ:
2: Tξ ← Tϕ
3: if transition of Tξ occurs then
4: m↑ϕ ← mτs

5: end if
6: mτs ← Tϕ.τe + 1
7: if Tξ holds then
8: if m↑ϕ ≤ (Tξ.τe − τ) holds then
9: Tξ.τe ← Tξ.τe − τ

10: else
11: Tξ ← (,)
12: end if
13: end if
14: return Tξ

Algorithm 3 Observer for ϕ ∧ ψ.

1: At each new input (Tϕ, Tψ):
2: if Tϕ holds and Tψ holds and qϕ 6= ()

holds and qψ 6= () holds then
3: Tξ ← (true,min(Tϕ.τe, Tψ.τe))
4: else if ¬Tϕ holds and ¬Tψ holds and
qϕ 6= () holds and qψ 6= () holds then

5: Tξ ← (false,max(Tϕ.τe, Tψ.τe))
6: else if ¬Tϕ holds and qϕ 6= () holds

then
7: Tξ ← (false, Tϕ.τe)
8: else if ¬Tψ holds and qψ 6= () holds

then
9: Tξ ← (false, Tψ.τe)

10: else
11: Tξ ← (,)
12: end if
13: dequeue(qϕ, qψ, Tξ.τe)
14: return Tξ

Algorithm 4 Observer for �J ϕ.

1: At each new input Tϕ:
2: Tξ ← dur(J) Tϕ
3: if (Tξ.τe −min(J) ≥ 0) then
4: Tξ.τe ← Tξ.τe −min(J)
5: else
6: Tξ ← (,)
7: end if
8: return Tξ

Algorithm 5 Observer for ϕUJ ψ. Ini-
tially, mpre = m↑ϕ = 0, m↓ϕ = −∞, and
p = false.

1: At each new input (Tϕ, Tψ) in lockstep
mode:

2: if transition of Tϕ occurs then
3: m↑ϕ ← τe − 1
4: mpre ← −∞
5: end if
6: if transition of Tϕ occurs and Tψ

holds then
7: Tϕ.v, p ← true, true
8: m↓ϕ ← τe
9: end if

10: if Tϕ holds then
11: if Tψ holds then
12: if (m↑ϕ + min(J) < τe) holds

then
13: mpre ← τe
14: return (true, τe −min(J))

15: else if p holds then
16: return (false,m↓ϕ)
17: end if
18: else if (mpre + dur(J) ≤ τe) holds

then
19: return (false,max(m↑ϕ, τe −

max(J)))
20: end if
21: else
22: p ← false
23: if (min(J) = 0) holds then
24: return (Tψ.v, τe)
25: end if
26: return (false, τe)
27: end if
28: return (,)

22

2.3.1.4 Conjunction (ϕ ∧ ψ)

The observer for ϕ∧ψ, as stated in Alg. 10, reads inputs (Tϕ, Tψ) from two
synchronization queues, qϕ and qψ. Intuitively, the algorithm follows the
rules for conjunction in Boolean logic with additional emptiness checks on
qϕ and qψ. The procedure dequeue(qϕ, qψ, Tξ.τe) drops all entries Tϕ in
qϕ for which the following holds: Tϕ.τe ≤ Tξ.τe (analogous for qψ). To illus-
trate the algorithm, consider an observer for 5 (alt ≥ 600ft)∧(pitch ≥ 5◦)
and the execution in Fig. 2.1. For n ∈ [0, 9] the two observers for the
involved subformulas immediately output (false, n). For n ∈ [10, 14],
the observer for 5 (alt ≥ 600ft) returns (,), while in the meantime,
the atomic proposition (pitch ≥ 5◦) toggles its truth value several times,
i.e., (true, 10), (false, 11), (false, 12), (true, 13), (false, 14). These
tuples need to be buffered in queue qpitch≥5◦ until the observer for

5 (alt ≥ 600ft) generates its next output, i.e., (true, 10) at n = 15.
We apply the function aggregate(〈Tϕ〉), which repeatedly replaces two
consecutive elements 〈T iϕ〉, 〈T i+1

ϕ 〉 in 〈Tϕ〉 by 〈T i+1
ϕ 〉 iff 〈T iϕ〉.v = 〈T i+1

ϕ 〉.v,
to the content of qpitch≥5◦ once every time an element is added to qpitch≥5◦ .
Therefore, at n = 15: qpitch≥5◦ = ((true, 10), (false, 12), (true, 13),
(false, 14), (true, 15)) and q

5 (alt≥600ft) = ((true, 10)). The observer
returns (true, 10) (line 3) and dequeue(qϕ, qψ, 10) yields: qpitch≥5◦ =
((false, 12), (true, 13), (false, 14), (true, 15)) and q

5 (alt≥600ft) = ().

2.3.1.5 Until within Future Interval (ϕ UJ ψ)

The observer for ϕ UJ ψ, as stated in Alg. 12, reads inputs (Tϕ, Tψ) from
two synchronization queues and makes use of a Boolean flag p and three
registers m↑ϕ, m↓ϕ, and mpre with domain N0∪{−∞}: m↑ϕ (m↓ϕ) holds
the time stamp of the latest transition (transition) of 〈Tϕ〉 and
mpre holds the latest time stamp where the observer detected ϕ UJ ψ to
hold. Input tuples (Tϕ, Tψ) for the observer are read from synchronization
queues in a lockstep mode: (Tϕ, Tψ) is split into (T ′ϕ, T

′
ψ), where T ′ϕ.τe =

T ′ψ.τe and the time stamp T ′′ϕ .τe of the next tuple (T ′′ϕ , T
′′
ψ) is T ′ϕ.τe+1. This

ensures that the observer outputs only a single tuple at each run and avoids
output buffers, which would account for additional hardware resources
(see correctness proof in the Appendix for a discussion). Intuitively, if
Tϕ does not hold (lines 22-26) the observer is synchronous to its input
and immediately outputs (false, Tϕ.τe). If Tϕ holds (lines 11-20) the
time stamp n′ of the output tuple is not necessarily synchronous to the
time stamp Tϕ.τe of the input anymore, however, bounded by (Tϕ.τe −
max(J)) ≤ n′ ≤ Tϕ.τe (see Lemma “unrolling” in the Appendix). To
illustrate the algorithm, consider an observer for (pitch ≥ 5◦) U[5,10] (alt ≥
600ft) over the execution in Fig. 2.1. At time n = 0, we have mpre = 0,
m↑ϕ = 0, and m↓ϕ = −∞ and since 〈T 0

pitch≥5◦〉 does not hold, the observer
outputs (false, 0) in line 26. The outputs for n ∈ [1, 2] are (false, 1) and
(false, 2). At time n = 3, a transition of 〈Tpitch≥5◦〉 occurs, thus we
assign m↑ϕ = 2 and mpre = −∞ (lines 3 and 4). Since 〈T 3

pitch≥5◦〉 holds

23

and 〈T 3
alt≥600ft〉 does not hold, the predicate in line 18 is evaluated, which

holds and the algorithm returns 〈false,max(2, 3−10)〉 = (false, 2). Thus,
the observer does not yield a new output in this case, which repeats for
times n ∈ [4, 9]. At time n = 10, a transition of 〈Talt≥600ft〉 occurs and
the predicate in line 12 is evaluated. Since (2+5) < 10 holds, the algorithm
returns (true, 5), revealing that en |= (pitch ≥ 5◦) U[5,10] (alt ≥ 600ft)
for n ∈ [3, 5]. At time n = 11, a transition of 〈Tpitch≥5◦〉 occurs
and since 〈T 11

alt≥600ft〉 holds, p and the truth value of the current input

〈T 11
pitch≥5◦〉.v are set true and m↓ϕ = 11. Again, line 12 is evaluated and

the algorithm returns (true, 6). At time n = 12, since 〈T 12
pitch≥5◦〉 does

not hold, we clear p in line 22 and the algorithm returns (false, 12) in
line 26, i.e., en 6|=(pitch ≥ 5◦) U[5,10] (alt ≥ 600ft) for n ∈ [7, 12]. At
time n = 13, a transition of 〈Tpitch≥5◦〉 occurs, thus m↑ϕ = 12 and
mpre = −∞. The predicates in line 12 and 15 do not hold, the algorithm
returns no new output in line 28. At time n = 14, a transition of
〈Tpitch≥5◦〉 occurs, thus p and 〈T 14

pitch≥5◦〉.v are set true and m↓ϕ = 14.
The predicate in line 15 holds, and the algorithm outputs (false, 14),
revealing that en 6|=(pitch ≥ 5◦) U[5,10] (alt ≥ 600ft) for n ∈ [13, 14].

2.3.2 Synchronous Observers

The main characteristic of our synchronous observers is that they are
evaluated at every tick of the RTC and that their output tuples T are
guaranteed to be synchronous to the current time stamp n. Thus, for
each time n, a synchronous observer outputs a tuple T with T.τe = n.
This eliminates the need for synchronization queues. Inputs and outputs
of these observers are execution sequences with three-valued verdicts.
The underlying abstraction is given by êval : �→ {true, false,maybe},
where � ∈ {¬ϕ,ϕ ∧ ψ, τ ϕ,�J ϕ,ϕ UJ ψ}. The implementation of

êval (¬ϕ) and êval (ϕ ∧ ψ) follows the rules for Kleene logic [25]. For
the remaining operators we define the verdict Tξ.v of the output tuple
(Tξ.v, n), generated for inputs (Tϕ.v, n) (respectively (Tψ.v, n) for ϕ UJ ψ),
as:

êval (τ ϕ) =

true if Tϕ.v holds and τ = 0,
false if Tϕ.v does not hold,
maybe otherwise.

êval (�J ϕ) = maybe.

êval (ϕ UJ ψ) =

true if

Tϕ.v and Tψ.v holds
and min(J) = 0,

false if Tϕ.v does not hold,
maybe otherwise.

To illustrate our synchronous observer algorithms, consider the previ-
ously discussed formula 5 (alt ≥ 600ft) ∧ (pitch ≥ 5◦), which we want
to evaluate using the synchronous observer:

ξ = êval (êval (5 (alt ≥ 600ft)) ∧ (pitch ≥ 5◦))

24

For n ∈ [0, 9], as in the case of the asynchronous observer, we can

immediately output (false, n). At n = 10, êval (5 (alt ≥ 600ft)) yields
(maybe, n), thus, the observer is inconclusive about the truth value of
e10 |= ξ. At n ∈ [11, 12] since (pitch ≥ 5◦) does not hold, the outputs are
(false, n). For analogous arguments, the output at n = 13 is (maybe, 13),
at n = 14 (false, 14), and at n = 15 (maybe, 15). In this way, at times
n ∈ {11, 12, 14} the synchronous observer completes early evaluation of
ξ, producing output that would, without the abstraction, be guaranteed
by the exact asynchronous observer with a delay of 5 time units, i.e., at
times n ∈ {16, 17, 19}.

2.4 Mapping Observers into Efficient Hardware

We introduce a mapping of the observer pairs into efficient hardware
blocks and a synthesis procedure to generate a configuration for these
blocks from an arbitrary MTL specification. This configuration is loaded
into the control unit of our rt-R2U2, where it changes the interconnections
between a pool of (static) hardware observer blocks and assigns memory
regions for synchronization queues. This approach enables us to quickly
change the monitored specification (within resource limitations) without
re-compiling the rt-R2U2’s hardware, supporting our Realizability
requirement.

Asynchronous observers require arithmetic operations on time stamps.
Registers and flags as required by the observer algorithm are mapped to
circuits that can store information, such as flip-flops. For the synchroniza-
tion queues we turn to block RAMs (abundant on FPGAs), organized
as ring buffers. Time stamps are internally stored in registers of width
w = dlog2(n)e+ 2, to indicate −∞ and to allow overflows when perform-
ing arithmetical operations on time stamps. Subtraction and relational
operators as required by the observer for τ ϕ (Fig. 2.2) can be built
around adders. For example, the check in line 8 of Alg. 8 is implemented
using two w-bit wide adders: one for q = Tϕ.τe − τ and one to decide
whether m↑ϕ ≥ q. A third adder runs in parallel and assigns a new value
to mτs (line 6 of Alg. 8). Detecting a transition on 〈Tϕ〉 maps to an
XOR gate and an AND gate, implementing the circuit (T i−1

ϕ .v⊕T iϕ.v)∧T iϕ.v,
where T i−1

ϕ .v is the truth value of the previous input, stored in a flip-flop.
The multiplexer either writes a new output or sets a flag to indicate (,).

Synchronous observers do not require calculations on time stamps
and directly map to basic digital logic gates. Fig. 2.2 shows a circuit
representing an êval (τ ϕ) observer that accounts for one two-input
AND gate, one two-input OR gate, and two Inverter gates. Inputs (i1, i2)
and outputs (y1, y2) are encoded (to project the three-valued logic into
Boolean logic) such as: true (0, 0), false (0, 1), and maybe (1, 0). Input
j is set if τe = 0 and cleared otherwise.

25

Algorithm 6 Assigning synchronization queue sizes for AST(ξ′). Let S be a
set of nodes; Initially: w = 0, add all Σ nodes of AST(ξ′) to S; The function
wcd : � → N0 calculates the worst-case-delay an asynchronous observer may
introduce by: wcd(¬ϕ) = wcd(ϕ ∧ ψ) = 0, wcd(τ ϕ) = τ , wcd(�J ϕ) =
wcd(ϕ UJ ψ) = max(J).

1: while S is not empty do
2: s, w ← get next node from S, 0
3: if s is type ϕ UJ ψ or ϕ ∧ ψ then
4: w ← max(|qϕ|, |qψ|) + wcd(s)
5: end if
6: while s is not a synchronization queue do
7: s, w ← get predecessor of s in AST(ξ′), w + wcd(s)
8: end while
9: Set |q| = w; (q is opposite synchronization queue of s)

10: Add all ϕ UJ ψ and ϕ ∧ ψ nodes that have unassigned synchro-
nization queue sizes to S

11: end while

2.4.1 Synthesizing a Configuration for the rt-R2U2
The synthesis procedure to translate an MTL specification ξ into a
configuration such that the rt-R2U2 instantiates observers for both ξ and
êval (ξ), works as follows:

� Preprocessing. By the equivalences given in Sect. 2.2 rewrite ξ to ξ′,
such that operators in ξ′ are from {¬ϕ,ϕ ∧ ψ, τ ϕ,�J ϕ,ϕ UJ ψ}
(SA1).

� Parsing. Parse ξ′ to obtain an Abstract Syntax Tree (AST), denoted
by AST(ξ′). The leaves of this tree are the atomic propositions Σ
of ξ′ (SA2).

� Allocating observers. For all nodes q in AST(ξ′) allocate both
the corresponding synchronous and the asynchronous hardware
observer block (SA3).

� Adding synchronization queues. ∀q ∈ AST(ξ′): If q is of type ϕ∧ψ
or ϕ UJ ψ add queues qϕ and qψ to the inputs of the respective
asynchronous observer (MA1).

� Interconnect and dimensioning. Connect observers and queues
according to AST(ξ′). Execute Alg. 6 (MA2).

Let {σ1, σ2, σ3} ∈ Σ and ξ = σ1 → (10 (σ2) ∨ 100(σ3)) be an
MTL formula we want to synthesize a configuration for. SA1 yields
ξ′ = ¬(σ1 ∧ ¬(¬ 10 (¬σ2)) ∧ ¬(¬ 100 (¬σ3))) which simplifies to ξ =
¬(σ1 ∧ 10 (¬σ2) ∧ 100 (¬σ3)). SA2 yields AST(ξ′). SA3 instantiates
two ϕ ∧ ψ, three ¬ϕ, one 10 Tϕ and one 100 Tϕ observers, both
synchronous and asynchronous. MA1, introduces queues qσ1 , qξ2 , qξ3 , qξ4

26

and MA2 interconnects observers and queues and assigns |qσ1 | = 100,
|qξ2 | = 100, |qξ3 | = 10, and |qξ4 | = 0, see Fig. 2.2.

2.4.2 Circuit Size and Depth Complexity Results
Having discussed how to determine the size of the synchronization queues
for our asynchronous MTL observers, we are now in the position to prove
space and time complexity bounds.

Theorem 2.41 (Space Complexity of Asynchronous Observers)

The respective asynchronous observer for a given MTL specification ϕ has
a space complexity, in terms of memory bits, bounded by (2 + dlog2(n)e) ·
(2 ·m · p), where m is the number of binary observers (i.e., ϕ ∧ ψ or
ϕUJ ψ) in ϕ, p is the worst-case delay of a single predecessor chain in
AST(ϕ), and n ∈ N0 is the time stamp it is executed.

Theorem 2.42 (Time Complexity of Asynchronous Observers)

The respective asynchronous observer for a given MTL specification ϕ

has an asymptotic time complexity of O
(

log2 log2 max(p, n) · d
)

, where p

is the maximum worst-case-delay of any observer in AST(ϕ), d the depth
of AST(ϕ), and n ∈ N0 the time stamp it is executed.

For our synchronous observers, we prove upper bounds in terms of two-
input gates on the size of resulting circuits. Actual implementations
may yield significant better results on circuit size, depending on the
performance of the logic synthesis tool.

Theorem 2.43 (Circuit-Size Complexity of Synchronous Observers)

For a given MTL formula ϕ, the circuit to monitor êval (ϕ) has a circuit-
size complexity bounded by 11 ·m, where m is the number of observers in
AST(ϕ).

Theorem 2.44 (Circuit-Depth Complexity of Synchronous Observers)

For a given MTL formula ϕ, the circuit to monitor êval (ϕ) has a circuit-
depth complexity of 4 · d.

2.5 Applying the rt-R2U2 to NASA’s Swift UAS
We implemented our rt-R2U2 as a register-transfer-level VHDL hard-
ware design, which we simulated in Mentor Graphics ModelSim and
synthesized for different FPGAs using the industrial logic synthesis tool
Altera Quartus II.3 With our rt-R2U2, we analyzed raw flight data
from NASA’s Swift UAS collected during test flights. The higher-level

3Simulation traces are available in the Appendix; tools can be downloaded at
http://www.mentor.com and http://www.altera.com.

27

reasoning is performed by a health model, modeled as a Bayesian network
(BN) where the nodes correspond to discrete random variables. Fig. 2.3
shows the relevant excerpt for reasoning about altitude. Directed edges en-
code conditional dependencies between variables, e.g., the sensor reading
SL depends on the health of the laser altimeter sensor HL. Conditional
probability tables at each node define the local dependencies. During
health estimation, verdicts computed by our observer algorithms are
provided as virtual sensor values to the observable nodes SL, SB, SS ; e.g.,
the laser altimeter measuring an altitude increase would result in setting
SL to state inc. Then, the posteriors of the multivariate probability
distribution encoded in the BN are calculated [15]; for details of modeling
and reasoning see [21,42].

Our temporal specifications are evaluated by our runtime observers
and describe flight rules (ϕ1, ϕ2) and virtual sensors:

ϕ1 = (cmd == takeoff)→ 10 (altB ≥ 600ft)
ϕ2 = (cmd == takeoff)→ ∗ (cmd == land)

ϕ1 encodes our running example flight rule; ϕ2 is a mission-bounded
LTL property requiring that the command land is received after takeoff,
within the projected mission time, indicated by ∗. Fig. 2.3 shows the
execution sequences produced by both the asynchronous (en |= ϕ1) and

the synchronous (en |= êval (ϕ1)) observers for flight rule ϕ1. To keep
the presentation accessible we scaled the timeline to just 24 time stamps;
the actual implementation uses a resolution of 232 time stamps. The
synchronous observer is able to prove the validity of ϕ1 immediately at all
time stamps but one (n = 1), where the output is (maybe, 1), indicated
by . The asynchronous observer will resolve this inconclusive output at
time n = 11, by generating the tuple (false, 1), revealing a violation of
ϕ at time n = 1. The verdicts of σSL↑ ,σSL↓ , σSB↑ , σSB↓ , ϕSS↑ , and ϕSS↓
are mapped to inputs SL, SB, SS of the health model:

σSL↑ = (altL − alt′L) > 0 σSL↓ = (altL − alt′L) < 0

σSB↑ = (altB − alt′B) > 0 σSB↓ = (altB − alt′B) < 0

σSB↑ observes if the first derivation of the barometric altimeter reading
is positive, thus, holds if the sensors values indicate that the UAS is
ascending. We set SB to inc if σSB↑ holds and to dec if σSB↓ holds. The
specifications ϕSS↑ and ϕSS↓ subsume the pitch and the velocity readings
to an additional, indirect altitude sensor. Due to sensor noise, simple
threshold properties on the IMU signals would yield a large number of
false positives. Instead ϕSS↑ and ϕSS↓ use τ ϕ observers as filters, by
requiring that the pitch and the velocity signals exceed a threshold for
multiple time steps.

ϕSS↑ = 10 (pitch ≥ 5◦) ∧ 5 (vel up ≥ 2ms)

ϕSS↓ = 10 (pitch < 2◦) ∧ 5 (vel up ≤ −2ms)

Our real-time SHM analysis matched post-flight analysis by test
engineers, including successfully pinpointing a laser altimeter failure,

28

see Fig 2.3: the barometric altimeter, pitch, and the velocity read-
ings indicated an increase in altitude (σSB↑ and ϕSS↑ held) while the
laser altimeter indicated a decrease (σSL↓ held). The posterior marginal
Pr(HL = healthy | en |= {σSL , σSB , ϕSS}) of the node HL, inferred from
the BN, dropped from 70% to 8%, indicating a low degree of trust in the
laser altimeter reading during the outage; engineers attribute the failure
to the UAS exceeding its operational altitude.

2.6 Conclusion
We presented a novel SHM technique that enables both real-time as-
sessment of the system status of an embedded system with respect to
temporal-logic-based specifications and also supports statistical reason-
ing to estimate its health at runtime. To ensure Realizability, we
observe specifications given in two real-time projections of LTL that
naturally encode future-time requirements such as flight rules. Real-time
health modeling, e.g., using Bayesian networks allows mitigative reactions
inferred from complex relationships between observations. To ensure
Responsiveness, we run both an over-approximative, but synchronous
to the real-time clock (RTC), and an exact, but asynchronous to the RTC,
observer in parallel for every specification. To ensure Unobtrusiveness
to flight-certified systems, we designed our observer algorithms with a
light-weight, FPGA-based implementation in mind and showed how to
map them into efficient, but reconfigurable circuits. Following on our
success using rt-R2U2 to analyze real flight data recorded by NASA’s
Swift UAS, we plan to analyze future missions of the Swift or small
satellites with the goal of deploying rt-R2U2 onboard.

29

q =
T'.⌧e − ⌧
m↑' ≥ q

m⌧s =
T'.⌧e + 1

multiplexer

T⇠T'

edge detection

i1

j

i2

y1

y2

¬ �2 ¬ �3

10 ⇠0 100 ⇠1

⇠2 ∧ ⇠3

�1 ∧ ⇠4
¬ ⇠5

�eval (¬ �2) �eval (¬ �3)
�eval (10 ⇠0) �eval (100 ⇠1)

�eval (⇠2 ∧ ⇠3)

�eval (�1 ∧ ⇠4)
�eval (¬ ⇠5)

�1
�2
�3

inputs

asynchronous synchronous

outputs

depth d of
AST (⇠) = 5

en′ � ⇠ en ��eval (⇠)

q�1

q⇠2 q⇠3

q⇠4

Figure 2.2: Left: hardware implementations for τ ϕ (top) and êval (τ ϕ)
(bottom). Right: subformulas of AST(ξ), observers, and queues synthe-
sized for ξ. Mapping the observers to hardware yields two levels of
parallelism: (i) asynchronous (left) and the synchronous observers (right)
run in parallel and (ii) observers for subformulas run in parallel, e.g.,

10 ξ0 and 100 ξ1.

Barometric altitude (altB) / ft

Laser altitude (altL) / ft

300

600

900
Swift UAS flight data

Euler pitch angle (pitch) / rad

Vert. velocity (vel up) / m
s

Barometric altitude (altB) / ft

Laser altitude (altL) / ft

300

600

900 Swift UAS flight data

Euler pitch angle (pitch) / rad

Vertical velocity (vel up) / m
s

Pr(HL = healthy ∣ en ⊧ {σSL
, σSB

, ϕSS
})

Pr(HB = healthy ∣ en ⊧ {σSL
, σSB

, ϕSS
})

UAS health estimation (output of higher-level reasoning unit)

resolve by async. observer

UAS status assessment (output of runtime observers)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 0 0 0 0 0 0 0 0 0 0 1 12 13 14 15 16 17 18 19 20 21 22 23

n

en ⊧ altB ≥ 600ft

en ⊧ (cmd == takeoff)

en ⊧ êval (ϕ1)

en ⊧ ϕ1
τe

v

S BaroAlt
(SB)

H BaroAlt
(HB)

S LaserAlt
(SL)

H LaserAlt
(HL)

S Sensors
(SS)

U Altimeter
(UA) HB ΘHB

healthy 0.9
bad 0.1

HL ΘHL

healthy 0.7
bad 0.3

UA ΘUA

inc 0.5
dec 0.5

UA SS ΘSS

inc
inc 0.7
dec 0.1
maybe 0.2

dec
inc 0.1
dec 0.7
maybe 0.2

UA HB SB ΘSB

inc
healthy inc 1.0

dec 0.0

bad inc 0.5
dec 0.5

dec
healthy inc 0.0

dec 1.0

bad inc 0.5
dec 0.5

UA HL SL ΘSL

inc
healthy inc 1.0

dec 0.0

bad inc 0.5
dec 0.5

dec
healthy inc 0.0

dec 1.0

bad inc 0.5
dec 0.5

Inputs to our rt-R2U2 are flight data,
sampled in real time; a health model as BN,
right; and an MTL specification ϕ.
Outputs: health estimation (posterior
marginals of HL and HB , quantifying the
health of the laser and barometric
altimeter) and the status of the UAS.

Figure 2.3: Adding SHM to the Swift UAS

30

Chapter 3

Runtime Observer Pairs
and Bayesian Network
Reasoners On-board
FPGAs: Flight-Certifiable
System Health
Management for Embedded
Systems [21]

3.1 Introduction

1

Totally autonomous systems operating in hazardous environments save
human lives. In order to operate, they must both be able to intelligently
react to unknown environments to carry out their missions and adhere
to safety regulations to prevent causing harm. NASA’s Swift Unmanned
Aerial System (UAS) [23] is tasked with intelligently mapping California
wildfires for maximally effective deployment of fire-fighting resources
yet faces obstacles to deployment, i.e., from the FAA because it must
also provably avoid harming any people or property in the air or on the
ground in case of off-nominal conditions. Similar challenges are faced
by NASA’s Viking Sierra-class UAS, tasked with low-ceiling earthquake
surveillance, as well as many other autonomous vehicles, UAS, rovers,
and satellites. To provide assurance that these vehicles will not cause any
harm during their missions, we propose a framework designed to deliver
runtime System Health Management (SHM) [24] while adhering to strict
operational constraints, all aboard a low-cost, dedicated, and separate

1The material in this chapter is published in [21].

31

FPGA; FPGAs are standard components used in such vehicles. We name
our framework rt-R2U2 after these constraints:
real-time: SHM must detect and diagnose faults in real time during any
mission.
Realizable: We must utilize existing on-board hardware (here an
FPGA) providing a generic interface to connect a wide variety of sys-
tems to our plug-and-play framework that can efficiently monitor dif-
ferent requirements during different mission stages, e.g., deployment,
measurement, and return. New specifications do not require lengthy
re-compilation and we use an intuitive, expressive specification language;
we require real-time projections of Linear Temporal Logic (LTL) since
operational concepts for UAS and other autonomous vehicles are most
frequently mapped over timelines.
Responsive: We must continuously monitor the system, detecting any
deviations from the specifications within a tight and a priori known
time bound and enabling mitigation or rescue measures. This includes
reporting intermediate status and satisfaction of timed requirements as
early as possible and utilizing them for efficient decision making.
Unobtrusive: We must not alter any crucial properties of the system,
use commercial-off-the-shelf (COTS) components to avoid altering cost,
and above all not alter any hardware or software components in such
a way as to lose flight-certifiability, which limits us to read-only access
to the data from COTS components. In particular, we must not alter
functionality, behavior, timing, time or budget constraints, or tolerances,
e.g., for size, weight, power, or telemetry bandwidth.
Unit : The rt-R2U2 is a self-contained unit.

Previously, we defined a compositional design for combining building
blocks consisting of paired temporal logic observers; Boolean functions;
data filters, such as smoothing, Kalman, or FFT; and Bayesian reasoners
for achieving these goals [43]. We require the temporal logic observer pairs
for efficient temporal reasoning but since temporal monitors don’t make
decisions, Bayesian reasoning is required in conjunction with our temporal
logic observer pairs in order to enable the decisions required by this safety-
critical system. We designed and proved correct a method of synthesizing
paired temporal logic observers to monitor, both synchronously and
asynchronously, the system safety requirements and feed this output
into Bayesian network (BN) reasoner back ends to enable intelligent
handling and mitigation of any off-nominal operational conditions [39].
In this chapter, we show how to create those BN back ends and how
to efficiently encode the entire rt-R2U2 runtime monitoring framework
on-board a standard FPGA to enable intelligent runtime SHM within our
strict operational constraints. We demonstrate that our implementation
can significantly outperform expert human operators by running it in a
hardware-supported simulation with real flight data from a test flight of
the Swift UAS during which a fluxgate magnetometer malfunction caused
a hard-to-diagnose failure that grounded the flight test for 48 hours, a

32

costly disturbance in terms of both time and money. Had rt-R2U2 been
running on-board during the flight test it would have diagnosed this
malfunction in real time and kept the UAS flying.

3.1.1 Related Work

While there has been promising work in Bayesian reasoning for proba-
bilistic diagnosis via efficient data structures in software [41,44], this does
not meet our Unobtrusiveness requirement to avoid altering software
or our Realizability requirement because it does not allow efficient
reasoning over temporal traces. For that, we need dynamic Bayes Nets,
which are much more complex and necessarily cannot be Responsive in
real time.

There is a wealth of promising temporal-logic runtime monitoring tech-
niques in software, including automata-based, low-overhead techniques,
i.e., [17,45]. The success of these techniques inspires our research question:
how do we achieve the same efficient, low-overhead runtime monitoring
results, but in hardware since we cannot modify system software without
losing flight certifiability? Perhaps the most pertinent is Copilot [37],
which generates constant-time and constant-space C programs implement-
ing hard real-time monitors, satisfying our Responsiveness requirement.
Copilot is unobtrusive in that it does not alter functionality, schedulabil-
ity, certifiability, size, weight, or power, but the software implementation
still violates our strict Unobtrusiveness requirement by executing soft-
ware. Copilot provides only sampling-based runtime monitoring whereas
rt-R2U2 provides complete SHM including BN reasoning.

BusMOP [32,35] is perhaps most similar to our rt-R2U2 framework.
Exactly like rt-R2U2, BusMOP achieves zero runtime overhead via a
bus-interface and an implementation on a reconfigurable FPGA and
monitors COTS peripherals. However, BusMOP only reports property
failure and (at least at present) does not handle future-time logic, whereas
we require early-as-possible reporting of future-time temporal properties
passing and intermediate status updates. The time elapsed from any
event that triggers a property resolution to executing the corresponding
handler is up to 4 clock cycles for BusMOP whereas rt-R2U2 always
reports in 1 clock cycle. Most importantly, although BusMOP can
monitor multiple properties at once, it handles diagnosis on a single-
property-monitoring basis, executing arbitrary user-supplied code on the
occurrence of any property violation whereas rt-R2U2 performs SHM
on a system level, synthesizing BN reasoners that utilize the passage,
failure, and intermediate status of multiple properties to assess overall
system health and reason about conditions that require many properties
to diagnose. Also rt-R2U2 never allows execution of arbitrary code as
that would violate Unobtrusiveness, particularly flight certifiability
requirements.

The gNOSIS [28] framework also utilizes FPGAs, but assesses FPGA

33

implementations, mines assertions either from simulation or hardware
traces, and synthesizes LTL into, sometimes very large, Finite State
Machines that take time to be re-synthesized between missions, violat-
ing our Realizability requirement. Its high bandwidth, automated
probe insertion, ability to change timing properties of the system, and
low sample-rate violate our Unobtrusiveness and Responsiveness
requirements, though gNOSIS may be valuable for design-time checking
of rt-R2U2 in the future.

3.1.2 Contributions

We define hardware, FPGA encodings for both the temporal logic runtime
observer pairs proposed in [39] and the special BN reasoning units required
to process their three-valued output for diagnostics and decision-making.
We detail novel FPGA implementations within a specific architecture to
exhibit the strengths of an FPGA implementation in hardware in order
to fulfill our strict operational requirements; this construction incurs zero
runtime overhead. We provide a specialized construction rather than the
standard “algorithm-rewrite-in-VHDL” that may be acceptable for less-
constrained systems. We provide timing and performance data showing
reproducible evidence that our new rt-R2U2 implementation performs
within our required parameters of Realizability, Responsiveness, and
Unobtrusiveness in real time. Finally, we highlight implementation
challenges to provide instructive value for others looking to reproduce
our work, i.e., implementing theoretically proven temporal logic observer
constructions on a real-world UAS. Using full-scale, real flight test data
streams from NASA’s Swift UAS, we demonstrate this real-time execution
and prove that rt-R2U2 would have pinpointed in real time a subtle buffer
overflow issue that grounded the flight test and stumped human experts
for two days in real life.

This chapter is organized as follows: Section 3.2 provides the reader
with theoretical principles of our approach. Section 3.3 provides an
overview of the various parts and Sections 3.4 and 3.5 give more details
about the hardware implementation. A real-world test case of NASA’s
Swift UAS is evaluated in Section 3.6. Section 3.7 concludes this chapter
with a summary of our findings.

3.2 Preliminaries

Our system health models are comprised of paired temporal observers,
sensor filters, and Bayesian network probabilistic reasoners, all encoded
on-board an FPGA; see [43] for a detailed system-level overview.

3.2.1 Temporal-Logic Based Runtime Observer Pairs [39]

We encode system specifications in real-time projections of LTL. Specifi-
cally, we use Metric Temporal Logic (MTL), which replaces the temporal

34

operators of LTL with operators that respect time bounds [2] and mission-
time LTL [39], which reduces to MTL with all operator bounds being
between now (i.e., time 0) and the mission termination time.

Discrete-Time MTL [39] For atomic proposition σ ∈ Σ, σ is a for-
mula. Let time bound J = [t, t′] with t, t′ ∈ N0. If ϕ and ψ are formulas,
then so are:

¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | Xϕ | ϕ UJ ψ | �Jϕ | ♦Jϕ.

Time bounds are specified as intervals: for t, t′ ∈ N0, we write [t, t′] for
the set {i ∈ N0 | t ≤ i ≤ t′}. We interpret MTL formulas over executions
of the form e : ω → 2Prop; we define ϕ holds at time n of execution e,
denoted en |= ϕ, inductively as follows:

en |= true is true, en |= σ iff σ holds in sn,
en |= ¬ϕ iff en 6|=ϕ, en |= ϕ ∧ ψ iff en |= ϕ and en |= ψ,
en |= Xϕ iff en+1 |= ϕ, en |= ϕ ∨ ψ iff en |= ϕ or en |= ψ,
en |= ϕ UJ ψ iff

∃i(i ≥ n) : (i− n ∈ J ∧ ei |= ψ ∧ ∀j(n ≤ j < i) : ej |= ϕ).

Since systems in our application domain are usually bounded to a
certain mission time τ ∈ N0, we also encode mission-time LTL [39]. For
a formula φ in LTL, we create mission-bounded formula φm by replacing
every �, ♦, and U operator in φ with its bounded MTL equivalent using
the bounds J = [0, τ]. An execution sequence for an MTL formula ϕ,
denoted by 〈Tϕ〉, is a sequence of tuples Tϕ = (v, τe) where τe ∈ N0 is a
time stamp and v ∈ {true, false,maybe} is a verdict.

For every temporal logic system specification, we synthesize a pair
of runtime observers, one asynchronous and one synchronous, using the
construction defined and proved correct in [39]. Asynchronous observers
are evaluated with every new input, in this case with every tick of the
system clock. For every generated output tuple T we have that T.v ∈
{true, false} and T.τe ∈ [0, n]. Since verdicts are exact evaluations of
a future-time specification ϕ, for each clock tick they may resolve φ for
clock ticks prior to the current time n if the information required for this
resolution was not available until n. Synchronous observers are evaluated
at every tick of the system clock and their output tuples T are guaranteed
to be synchronous to the current time stamp n. Thus, for each time n, a
synchronous observer outputs a tuple T with T.τe = n. This eliminates
the need for synchronization queues. Outputs of these observers are three-
valued verdicts: T.v ∈ {true, false,maybe} depending on whether we
can concretely valuate that the observed formula holds at this time point
(true), does not hold (false), or cannot be evaluated due to insufficient
information (maybe). Verdicts of maybe are later resolved concretely
by the matching asynchronous observers in the first clock tick when
sufficient information is available.

35

3.2.2 Bayesian Networks for Health Models

A
S

C

H_S

H_U

U

B

+

f

× ×

+ +

λ!S λS

× × × ×

× + ×

+ × × + λ!UλU

× ×

×

×λ!HSθ0.05

+ ×

×λHSθ0.95

× × θ0.99λHU

θ0.01λH!U

× ×

λC θ0.5 λ!C

Figure 3.1: A: BN for Health management. B: Arithmetic circuit

In order to maximize the reasoning power of our health management
system, we use Bayesian networks (BN). BNs have been well established
in the area of diagnostic and health management (e.g., [31,34]) as they
can cope with conflicting sensor signals and priors. BNs are directed
acyclic graphs, where each node represents a statistical variable. Directed
edges between nodes correspond to (local) conditional dependencies. For
our health models, we are using BNs of a general structure as shown in
Figure 3.1A. We do not use dynamic BNs, because all temporal aspects
are being dealt with by the temporal observers described above. Discrete
sensor signals or outputs of the synchronous temporal observers (true,
false, maybe) are clamped to the “sensor” and “command” nodes of the
BN as observable. Since sensors can fail, they have (unobservable) health
nodes attached. As priors, these health nodes can contain information
on how reliable the component is, e.g., by using a Mean Time To Failure
(MTTF) metric.

Unobservable nodes U may describe the behavior of the system or
component as it is defined and influenced by the sensor or software
information. Often, such nodes are used to define a mode or state of
the system. For example, it is likely that the UAS is climbing if the
altimeter sensor says “altitude increasing.” Such (desired) behavior can
also be affected by faults, so behavior nodes have health nodes attached.
For details of modeling see [41]. The local conditional dependencies are
stored in the Conditional Probability Table (CPT) of each node. For
example, the CPT of the sensor node S defines its probabilities given its

36

dependencies: P (S|U,H S).

In our health management system, we, at each time stamp, calculate
the posterior probabilities of the BN’s health nodes, given the sensor and
command values e as evidence. The probability Pr(H S = good|e) gives
an indication of the status of the sensor or component. Reasoning in
real-time avionics applications requires aligning resource consumption of
diagnostic computations with tight resource bounds [33]. We are therefore
using a representation of BNs that is based upon arithmetic circuits (AC),
which are directed acyclic graphs where leaf nodes represent indicators (λ
in Fig. 3.1) and parameters (θ) while all other nodes represent addition
and multiplication operators. AC based reasoning algorithms are powerful,
as they provide predictable real-time performance [11,31].

The AC is factually a compact encoding of the joint distribution
into a network polynomial [13]. The marginal probability (see Corollary
1 in [13]) for a variable x given evidence e can then be calculated as
Pr(x | e) = 1

Pr(e) ·
∂f
∂λx

(e) where Pr(e) is the probability of the evidence.
In a first, bottom-up pass, the λ indicators are clamped according to
the evidence and the probability of this particular evidence setting is
evaluated. A subsequent top-down pass over the circuit computes the
partial derivatives ∂f

∂λx
. Based upon the structure of the AC, this algorithm

only requires —except for the final division by Pr(e)— only additions and
multiplications. Since the structure of the AC is determined at compile
time, a fixed, reproducible timing behavior can be guaranteed.

3.2.3 Digital Design 101 and FPGAs

Integrated circuits (ICs) have come a long way from the first analog,
vacuum tube-based switching circuits, over discrete semiconductors to
sub-micron feature size for modern ICs. Our ability to implement rt-
R2U2 in hardware is strongly based upon high-level hardware definition
languages and tools to describe the functionality of the hardware design,
and FPGAs, which make it possible to “instantiate” the hardware on-
the-fly without having to go through costly silicon wafer production.

VHDL - Very High Speed Integrated Circuit Hardware Defi-
nition Language. This type-safe programming language allows the
concise description of concurrent systems, supporting the inherent nature
of any IC. Therefore, programming paradigms are substantially different
from software programming languages, e.g., memory usage and mapping
has to be considered explicitly and algorithms with loops have to be
rewritten into finite state machines. In general, a lot more time and effort
has to be put into system design.

FPGA - Field Programmable Gate Array is a fast, cheap, and
efficient way to produce a custom-designed digital system or prototype.
Basically an FPGA consists of logic cells (Figure 3.2), that can be pro-
grammed according to its intended use. A modern FPGA is composed
of three main parts Configurable Logic Blocks (CLBs), long and short
interconnections with six-way programmable switches, and I/O blocks.

37

I/
O

b
lo

ck
I/

O
b

lo
ck

I/O block I/O block

I/O block I/O block

I/
O

b
lo

ck
I/

O
b

lo
ck

CLB

CLB

CLB

CLB

in
te

rc
on

n
ec

ti
on

s

switch box

six-way switch
(transistor based)

Figure 3.2: Simplified representation of a modern FPGA architecture.

The CLBs are elementary Look Up Tables (LUTs) where, depending
on the input values, a certain output value is presented to the next
cell. Hence, every possible combination of unary operations can be pro-
grammed. Complex functionality can be achieved by connecting different
CLBs using short (between neighboring cells) and long interconnections.
These interconnections need the most space on an FPGA, because in
general every cell can be connected to every other cell. The I/O cells
are also connected to this interconnection grid. To be able to route the
signals in all directions there is a “switch box” on every intersection. This
six-way switch is based on 6 transistors that can be programmed to route
the interconnection accordingly. In order to achieve higher performance
modern FPGAs have hardwired blocks for certain generic or complex
operations (adder, memory, multiplier, I/O transceiver, etc.).

3.3 System Overview

Our system health models are constructed based upon information ex-
tracted from system requirements, sensor schematics, and specifications
of expected behaviors, which are usually written in natural language.
In a manual process (Figure 3.3) we develop the health model in our
framework, which is comprised of temporal components (LTL and MTL
specifications), Bayesian networks (BNs), and signal processing. Our tool
chain compiles the individual parts and produces binary files, which, after
linking, are downloaded to the FPGA. The actual hardware architecture,
which is defined in VHDL, is compiled using a commercial tool chain2

2http://www.xilinx.com/products/design-tools/ise-design-suite/index.

htm

38

http://www.xilinx.com/products/design-tools/ise-design-suite/index.htm
http://www.xilinx.com/products/design-tools/ise-design-suite/index.htm

and used to configure the FPGA. This lengthy process, which can take
more than 1 hour on a high-performance workstation needs to be carried
out only once, since it is independent of the actual health model.

system specification
& description

Bayesian network

Γ > 0→ ♦[0,2s]∆β > θ,
(cmd = do)→ �[0,40](x ≥ 600),. . .

LTL formulas

parser,
compiler &

assembler script

ACE compiler*

*3rd party tool

01001001
01001100
01001111
01010110
01000101

binary file

+

× ×

+ +

× × × ×

θα θα

λβλβ θβθβ

arithmetic circuit

parser,
compiler &
assembler

GUI

01010101
01000010
01000001
01000010
01010011

binary file

in
te

rf
ac

e

FPGA

synthesis,
placement
& route*

*
3
r
d

p
a
rt
y

to
o
l.

VHDL sources

Figure 3.3: rt-R2U2 software tool chain

3.3.1 Software

The software tool chain for creating the code for the temporal logic
specifications is straightforward and only translates the given formulas
to a binary representation with mapping information. Significantly more
effort goes into preparing a BN for our system. First, the given network
is translated into an optimized arithmetic circuit (AC) using the Ace3

tool. Then, the resulting AC must be compiled and mapped for efficient
execution on the FPGA. This process, which will be described in more
detail in Section 3.5, is controlled with a Java GUI.

3.3.2 Hardware

The hardware architecture (Figure 3.4A) of our implementation is built
out of three components: the control subsystem, the runtime verification
(RV) unit, and the runtime reasoning (RR) unit. Whereas the control
subsystem establishes the communication link to the external world (e.g.,
to load health models and to receive health results), the RV and RR
units comprise the proper health management hardware, which we will
discuss in detail in the subsequent sections. Any sensor and software
data passed along the Swift UAS bus can be directly fed into the signals’
filters and pre-processing modules of the atChecker, which are a part of
the RV unit, where they are converted into streams of Boolean values.

Our architecture is designed in such a way that its requirements
with respect to gates and look-up tables only depend on the number of
signals we monitor, not on the temporal logic formulas or the Bayesian
networks. In the configuration used for our case study (with 12 signals),
the monitoring device synthesized for the Xilinx Virtex 5 XC5VFX130T
FPGA needed 28849 registers, 24450 look-up tables, 63 blocks of RAM,
and 25 digital signal processing units. These numbers clearly strongly

3http://reasoning.cs.ucla.edu/ace/

39

http://reasoning.cs.ucla.edu/ace/

A

SWIFT

S
en

so
rs

,
F

li
gh

t
C

om
p
u

te
r,

..
.

Host PC

rt
-R

2U
2

T
o
ol

C
h

ai
n

&
D

a
ta

L
og

gi
n

g

Health Management Hardware

FPGA

R
V

-U
n

it

atChecker

filter #0

#1

..
.

p
a
st

-t
im

e
O

b
se

rv
er

sy
n

ch
ro

n
ou

s
fu

tu
re

-t
im

e
O

b
se

rv
er

as
y
n

ch
ro

n
o
u

s
fu

tu
re

-t
im

e
O

b
se

rv
er

RTC

R
R

-U
n

it

Reasoning Master

Computing Blocks

#
0

#
1

#
2 . . .

Memory Interface

Control Unit
Communication

Interface
LCD

B

RESET

IDLE

FETCH

LOAD_OP1

LOAD_OP2

CALC

CALC_BOX_DOTCALC_UNTIL

WRITE_BACK

UPDATE_Q1

UPDATE_Q2

Figure 3.4: A: Overview of the rt-R2U2 architecture. B: FSM for the
ftObserver.

depend on the architecture of the FPGA, and, in our case used 35% of
the registers, 29% of the LUTs, 21% of the RAM, and 7% of the DSP
blocks.

The runtime verification subsystem evaluates the compiled temporal
logic formulas over the Boolean signals prepared by the atChecker. Since
evaluations of the past-time variations of our logics (MTL and mission-
time LTL) are naturally synchronous, we can essentially duplicate the
synchronous observer construction, but with past-time evaluation, to add
support for past-time formulas should they prove useful in the context of
the system specifications. Depending on the type of logic encoding each
individual formula (past or future time), it is either evaluated by the
past-time or future-time subsystem. As the algorithms are fundamentally
different for the two time domains we use two separate entities in the
FPGA. A real time clock (RTC) establishes a global time domain and
provides a time base for evaluating the temporal logic formulas.

After the temporal logic formulas have been evaluated, the results are
transferred to the runtime reasoning (RR) subsystem, where the compiled
Bayesian network is evaluated to yield the posterior marginals of the
health model. For easier debugging and evaluation, a memory dump of
the past and future time results as well as of the posterior marginals has
been implemented. After each execution cycle, the evaluation is paused
and the memory dump is transferred to the host PC for further analysis.

3.4 FPGA implementation of MTL/mission-time
LTL

As shown in Figure 3.4A, incoming sensor and software signals, which
consist of vectors of binary fixed-point numbers, are first processed and
discretized by the atChecker unit. This hardware component can contain
filters to smooth the signal, Fast Fourier Transforms, or Kalman Filters,
and performs scaling and comparison operations to yield a Boolean value.

40

Each discretizer block can process one or two signals s1, s2 according to
(±2p1 × F 2

1 (F 1
1 (s1))± 2p2 × F 2

2 (F 1
2 (s2))) ./ c for integer constants p1, p2,

and c, filters F ij , and a comparison operator ./ ∈ {=, <,≤,≥, >, 6=}. For
example, the discrete signal “UAS is at least 400ft above ground” would
be specified by: (mvg avg(altUAS) − altgnd) > 400, where the altitude
measurements of the UAS would be smoothed out by a moving average
filter before the altitude of the ground is subtracted. Note that several
blocks can be necessary for thresholding, e.g., to determine if the UAS is
above 400ft, 1000ft, or 5000ft.

Each temporal logic processing unit (ptObserver, ftObserver) is imple-
mented as a processor, which executes the compiled formulas instruction
by instruction. It contains its own program and data memory, and finite-
state-machine (FSM) based execution unit (Figure 3.4B4). Individual
instructions process Boolean operators and temporal logic operators using
the stages of Fetch (fetch instruction word) followed by loading the
appropriate operand(s). Calculation of the result can be accomplished in
one step (Calc) or might require an additional state for the more complex
temporal operations like U or �[.,.]. During calculation, values for the
synchronous and asynchronous operators are updated according to the
logic’s formal algorithm (see [39]). Finally, results are written back into
memory (Write) and the queues are updated during states (Update Q1,
Update Q2), before the execution engine goes back to its Idle state.
Asynchronous temporal observers usually need local memory for keeping
information like the time stamps for the last rising transition or the start
time of the next tuple in the queues, which are implemented using a
ring buffer. Internal functions feasible and aggregate put information
(timestamps) into the ring buffer, whereas a highly specialized garbage
collecting function removes time stamps that can no longer contribute
to the validity of the formula, thus keeping memory requirements low.
These updates to the queues happen during the Update states of the
processor ([39]).

In contrast to asynchronous observers, which require additional mem-
ory for keeping internal history information, synchronous observers are
realized as memoryless Boolean networks. Their three-valued logic {false,
true, maybe} is encoded in two binary signals as 〈0, 0〉, 〈0, 1〉, and 〈1, 0〉,
respectively.

Let us consider the following specification, which expresses that the
UAS, after receiving the takeoff command must reach an altitude alt
above ground of at least 600ft within 40 seconds: cmd = takeoff →
♦[0,40s](alt ≥ 600). Obviously, synchronous and asynchronous observers
report true before the takeoff. After takeoff, the synchronous observer
immediately returns maybe until the 40-second time window has expired
or the altitude exceeds 600ft, whichever comes first. Then the formula

4The architecture and FSM for processing the past time fragment is similar to this
unit and thus will not be discussed here.

41

A

computing
block

×/+
×/+ ×/+

i1 i2 i3 i4

×/+
×/+

i1 i3 i4

×/+

i1 i4
i1 i2 i3 i4

result

mode

B

bus interface

control unit

memory interface / multiplexer

network
parameter (θ)

memory

evidence
indicator (λ)
memory

instruction
memory

scratchpad
memory

ALU

×/+

×/+ ×/+

i1 i2 i3 i4

Figure 3.5: A: A computing block and its three modes of operation. B:
Internals of a computing block.

can be decided to yield true or false. In contrast, the asynchronous
observer always yields the concrete valuation of the formula, true or
false, for every time stamp; however this result (which is always tagged
with a time stamp) might retroactively resolve an earlier point in time.

For rt-R2U2, both types of observers are important. Whereas asyn-
chronous observers guarantee the concrete result but might refer to an
earlier system state, synchronous observers immediately yield some in-
formation, which can be used by the Bayesian network to disambiguate
failures. In our example, this information can be used to express that,
with a certain (albeit unknown) probability, the UAS still can reach the
desired target in time, but hasn’t done so yet. Our Bayesian health
models can reflect that fact by using three-valued sensor and command
nodes.

3.5 FPGA implementation of Bayesian Networks

The BN reasoning has been implemented on the FPGA as a Multiple
Instruction, Multiple Data (MIMD) architecture. This means that every
processing unit calculates a part of the AC using its individual data and
program memory. That way, a high degree of parallelism can be exploited
and we can obtain a high performance and low latency evaluation unit.
Therefore, our architectural design process led to a simple, tightly coupled
hardware architecture, which relies on optimized instructions provided by
the BN compiler (Figure 3.3). The underlying idea of this architecture is
to partition the entire arithmetic circuit into small parts of constant size,
which in turn are processed by a number of parallel execution units with
the goal of minimizing inter-processor data exchanges and synchronization
delays. We will first describe the hardware architecture and then focus
on the partitioning algorithm in the BN compiler.
BN Computing Block. We designed an elementary BN processor
(BN computing block) that can process three different kinds of small
“elementary” arithmetic circuits. A number of identical copies (the num-
ber depends on the size of the FPGA) of these computing blocks work
as slaves in a master-slave configuration. Figure 3.5A shows the three
different patterns. Each pattern consists of up to three arithmetic oper-
ators (addition or multiplication) and can have 2, 3, or 4 inputs. Such

42

a small pattern can be efficiently executed by a BN computing block.
Figure 3.5B shows a BN computing block, which is built from several
separate hardware units (bus interface, local memory, instruction de-
coder, ALU, etc.). On an abstract level the calculation is based on a
generic four-stage pipeline execution (Fetch, Decode, Calculate,
and Write-Back). To achieve this performance-focused behavior, each
subsystem runs independently. Therefore, a handshake synchronizing
protocol between each internal component is used. As a MIMD processor,
each BN computing block keeps its own instruction memory as well as
local storage for network parameters and evidence indicators. A local
scratchpad memory is used to store intermediate results.

Although probabilities are best represented using floating-point num-
bers according to IEEE 754, we chose to use an 18-bit fixed-point repre-
sentation, because floating-point ALUs are resource-intensive in terms
of both number of logic gates used and power, and would drastically
reduce the number of available parallel BN computing blocks. Our chosen
resolution is based on the 18-bit hardware multiplier that is available on
our Xilinx Virtex 5 FPGA. We achieve a resolution of 2−18 = 3.8 · 10−6,
which is sufficient for our purposes to represent probability values.

All slave processors are connected via a bus to the BN master processor.
Besides programming, data handling, and controlling their execution, the
master also calculates the final result Pr(x | e) = 1

Pr(e) ·
∂f
∂λx

(e), because
the resources needed to perform the division are comparatively high and
therefore not replicated over the slave processors.

Mapping of AC to BN computing units. Our software tool
chain tries to achieve an optimal mapping of the AC to the different
BN computation units during compile time, using a pattern-matching-
based algorithm. We “tile” the entire AC with the three small patterns
(Figure 3.5A) in such a way that the individual BN processing units
operate as parallel as possible and communication and data transfer is
reduced to a minimum. For this task, we use a Bellman-Ford algorithm
to obtain the optimal placement. Furthermore, all scheduling information
(internal reloads and communication on the hardware bus to exchange
data with other computing blocks) as well as the configuration for the
master and probability values for the Conditional Probability Table (CPT)
are prepared for the framework.

3.6 Case Study: Fluxgate Magnetometer Buffer
Overflow

In 2012, a NASA flight test of the Swift UAS was grounded for 48 hours
as system engineers worked to diagnose an unexpected problem with the
UAS that ceased vital data transmissions to the ground. All data of
the scientific sensors on the UAS (e.g., laser altimeter, magnetometer,
etc.) were collected by the Common Payload System (CPS). The fluxgate

43

magnetometer (FG), which measures strength and direction of the Earth’s
magnetic field, had previously failed and was replaced before the flight
test. System engineers eventually determined that the replacement was
not configured correctly; firmware on-board the fluxgate magnetometer
was sending data to its internal transmit buffer at high speed although the
intended speed of communication with the CPS was 9600 baud. As the
rate was set to a higher value and the software in the magnetometer did
not catch this error, internal buffer overflows started to occur, resulting
in an increasing number of corrupted packets sent to the CPS. This
misconfiguration in the data flow was very difficult to deduce by engineers
on the ground because they had to investigate the vast number of possible
scenarios that could halt data transmission.

Signal description Source

Ng number of good FG packets since start of mission CPS
Nb number of bad FG packets since start of mission CPS
Elog logging event CPS
FGx,y,z directional fluxgate magnetometer reading CPS
Hdx,y aircraft heading FC
p, q, r pitch, roll, and yaw rate FC

Table 3.1: Signals and sources used in this health model, sampled with a
1Hz sampling rate

In this case study, we use the original data as recorded by the Swift
Flight Computer (FC) and the CPS. At this time, no publicly available
report on this test flight has been published; the tests and their resulting
data are identified within NASA by the date and location, Surprise
Valley, California on May 8, 2012, starting at 7:50 am. With our rt-
R2U2 architecture, which continuously monitors our standard set of rates,
ranges, and relationships for the on-board sensors, we have been able to
diagnose this problem in real-time, and could have avoided the costly
delay in the flight tests.

The available recorded data are time series of continuous and discrete
sensor and status data for navigational, sensor, and system components.
From the multitude of signals, we selected, for the purpose of this case
study, the signals shown in Table 3.1. We denote the total number of
packets from the FG with Ntot = Ng +Nb; X

R = Xt −Xt−1 is the rate
of signal X, and XN denotes the normalized vector X.

3.6.1 The Bayesian Health Model

The results of the temporal specifications S1, . . . , S6 alone are not suf-
ficient to disambiguate the different failure modes. We are using the
Bayesian network as shown in Figure 3.6A, which receives, as evidence,
the results of each specification Si and produces posterior marginals of
the health nodes for the various failure modes. All health nodes are

44

shown in Figure 3.6A. H FG indicates the health of the FG sensor it-
self. It is obviously related to evidence that the measurements are valid
(S4) and that the measurements are changing over time (S5). The two
causal links from these health nodes indicate that relationship. Failure
modes H FG TxError and H FG TxOVR indicate an error in the
transmission circuit/software and overflow of the transmission buffer of
the fluxgate magnetometer, respectively. The final two failure modes
H FC RxOVR and H FC RxUR concern the receiver side of the CPS
and denote problems with receiver buffer overflow and receiver buffer
underrun, respectively.

H_FG

S4 S5

H_FG_TxErr

S2

H_FG_TxOVR

S1S3

H_FC_RxOVR

S6

H_FC_RxUR

Node Health of . . .

H FG magnetometer sensor
H FC RxUR Receiver underrun in CPS
H FC RxOVR Receiver overrun in CPS
H FG TxOVR Transmitter overrun in FG
H FG TxErr Transmitter error in FG

Figure 3.6: Bayesian Network for our example with legend of health
nodes.

A

H_FG

S4 S5

H_FG_TxErr

S2

H_FG_TxOVR

S1S3

H_FC_RxOVR

S6

H_FC_RxUR

B

H_FG

S4 S5

H_FG_TxErr

S2

H_FG_TxOVR

S1S3

H_FC_RxOVR

S6

H_FC_RxUR

C

H_FG

S4 S5

H_FG_TxErr

S2

H_FG_TxOVR

S1S3

H_FC_RxOVR

S6

H_FC_RxUR

Figure 3.7: A, B, C: posterior probabilities (lighter shading corresponds
to values closer to 1.0) for different input conditions.

Figure 3.7A shows the reasoning results of this case study, where the
wrong configuration setting of the fluxgate magnetometer produces an in-

45

creasing number of bad packets. The posterior of the node H FG TxOVR
is substantially lower, compared to the other health nodes, indicating
that a problem in the fluxgate magnetometer’s transmitter component is
most likely. So, debugging and repair attempts or on-board mitigation
can be focused on this specific component, thus our SHM could have
potentially avoided the extended ground time of the Swift UAS. This
situation also indicates that, with a smaller likelihood, this failure might
have been caused by some kind of overrun of the receiver circuit in the
flight computer, or specific errors during transmission.

Figures 3.7B, C show the use of prior information to help disambiguate
failures. Assume that we detected that the FG data are not changing,
i.e., S5 = false, despite the fact that the aircraft is moving. This could
have two causes: the sensor itself is broken, or something in the software
is wrong and no packets are reaching the receiver, causing an underrun
there. When this evidence is applied (red indicates false, green indicates
true), the posterior of all nodes is close to 1 (white); only H FG and
H FC RxUR show values around 0.5 (gray), indicating that these two
failures cannot be properly distinguished. This is not surprising, since we
set the priors to P (Hsensor = ok) = P (H FC RxUR) = 0.99. Making
the sensor less reliable, i.e., P (Hsensor = ok) = 0.95, now enables the
BN to clearly disambiguate both failure modes. Further disambiguation
information is provided by S5, which indicates that we actually receive
valid (i.e., UAS is moving) packets.

τ 0 1 2 3 4 5

NR
b ≥ 3

NR
b ≥ 2

NR
b ≥ 1

NR
b = 0

τ 0 1 2 3 4 5

S3

S2

S1

Figure 3.8: Recorded traces: sensor signals (left), trace of S1 . . . S3 (right).

τ = 1 τ = 2 τ = 3

H FC RxOVR
ok 99.47% 17.27% 65.52%

bad 0.53% 82.73% 34.48%

H FG TxOVR
ok 99.88% 81.82% 31.03%

bad 0.12% 18.18% 68.97%

H FG TxErr
ok 90.00% 90.00% 62.07%

bad 10.00% 10.00% 37.93%

Table 3.2: Data of health nodes (right) reflecting the buffer overflow
situation shown in 3.7A.

46

As the case study is based on a real event, we ran it on our hardware
and extracted a trace of the sensor signals and specifications. Figure
3.8 shows a small snippet from this trace. The results of the atChecker
evaluation of certain sensor signals can be seen on the left. On the right
we show the results of S1 to S3. The system model delivers different health
estimations during this trace. While at τ = 1 the system is perfectly
healthy, at τ = 2 the rate of bad packets drastically increases. More than
3 bad packets have been received within 30 seconds. While the violation
of S3 would suggest a receiver overrun at this time, the indication for
a buffer overflow becomes concrete at τ = 3. This is indicated in the
table on the right in Figure 3.8. The high probability of a transmitter
overrun at the fluxgate magnetometer side with the reduced confidence of
an error-free transition, leads to determining a root cause at the fluxgate
magnetometer buffer.

3.7 Conclusion

We have presented an FPGA-based implementation for our health manage-
ment framework called rt-R2U2 for the runtime monitoring and analysis
of important safety and performance properties of a complex unmanned
aircraft, or other autonomous systems. A combination of temporal logic
observer pairs and Bayesian networks makes it possible to define expres-
sive, yet compact health models. Our hardware implementation of this
health management framework using efficient special-purpose processors
allows us to execute our health models in real time. Furthermore, new or
updated health models can be loaded onto the FPGA quickly between
missions without having to re-synthesize its entire configuration in a
time-consuming process.

We have demonstrated modeling and analysis capabilities on a health
model, which monitors the serial communication between the payload
computer and sensors (e.g., an on-board fluxgate magnetometer) on
NASA’s Swift UAS. Using data from an actual test flight, we demon-
strated that our health management system could have quickly detected
a configuration problem of the fluxgate magnetometer as the cause for a
buffer overflow—the original problem grounded the aircraft for two days
until the root cause could be determined.

Our rt-R2U2 system health management framework is applicable to
a wide range of embedded systems, including CubeSats and rovers. Our
independent hardware implementation allows us to monitor the system
without interfering with the previously-certified software. This makes
rt-R2U2 amenable both for black-box systems, where only the external
connections/buses are available (like the Swift UAS), and monitoring
white-box systems, where potentially each variable of the flight software
could be monitored.

There is of course a question of trade-offs in any compositional SHM

47

framework like the one we have detailed here: for any combination of
data stream and off-nominal behavior, where is the most efficient place to
check for and handle that off-nominal behavior? Should a small wobble
in a data value be filtered out via a standard analog filter, accepted
by a reasonably lenient temporal logic observer, or flagged by the BN
diagnostic reasoner? In the future, it would be advantageous to complete
a study of efficient design patterns for compositional temporal logic/BN
SHM and map the types of checks we need to perform and the natural
variances in sensor readings that we need to allow for their most efficient
implementations.

Future work will also address the challenges of automatically generat-
ing health models from requirements and design documents, and carrying
out flight tests with our FPGA-based rt-R2U2 on-board. In a next step,
the output of rt-R2U2 could be connected to an on-board decision-making
component, which could issue commands to loiter, curtail the mission,
execute an emergency landing, etc.. Here, probabilistic information and
confidence intervals calculated by the Bayesian networks of our approach
can play an important role in providing solid justifications for decisions
made.

48

Description Formula
S1: The FG packet transmission
rate NR

tot is appropriate: about 64
per second.

63 ≤ NR
tot ≤ 66

S2: The number of bad packets NR
b

is low, no more than one bad packet
every 30 seconds.

�[0,30](N
R
b = 0 ∨ (NR

b ≥ 1 U[0,30]NR
b = 0))

S3: The bad packet rate NR
b does

not appear to be increasing; we do
not see a pattern of three bad pack-
ets within a short period of time.

¬(♦[0,30]N
R
b ≥ 2 ∧ ♦[0,100]N

R
b ≥ 3)

S4: The FG sensor is working, i.e.,
the data appears good. Here, we use
a simple, albeit noisy sanity check
by monitoring if the aircraft head-
ing vector with respect to the x
and y coordinates (Hdx, Hdy) cal-
culated by the flight computer using
the magnetic compass and inertial
measurements roughly points in the
same direction (same quadrant) as
the normalized fluxgate magnetome-
ter reading (FGNx , FG

N
y). To avoid

any false positive evaluations due to
a noisy sensor, we filter the input
signal.

((Hdx ≥ 0→ FGNx ≥ 0)∧
(Hdx < 0→ FGNx < 0))∨
((Hdy ≥ 0→ FGNy ≥ 0)∧
(Hdy < 0→ FGNy < 0))

S5: We have a subformula Eul that
states if the UAS is moving (Euler
rates of pitch p, roll q, and yaw r are
above the tolerance thresholds θ =
0.05) then the fluxgate magnetome-
ter should also register movement
above its threshold θFG = 0.005.
The formula states that this should
not fail more than three times within
100 seconds of each other.

Eul := (|p| > θ ∨ |q| > θ ∨ |r| > θ)→
(|FGx| > θFG ∨ |FGy| > θFG∨
|FGz| > θFG)

¬(¬Eul ∧ (♦[2,100](¬Eul ∧ ♦[2,100]¬Eul)))

S6: Whenever a logging event oc-
curs, the CPS has received a good
or a bad packet. S6 needs a sam-
pling rate of at least 64Hz.

Elog → ((Elogg ∧ ¬Elogb) ∨ (Elogb ∧ ¬Elogg)

S′
6: This case study uses a 1Hz sam-

pling rate. We are losing precision
and S6 becomes NR

g +NR
b = NR

tot =
64.

NR
tot = 64

Table 3.3: Temporal formula specifications that are translated into paired
runtime observers for the fluxgate magnetometer (FG) health model

49

50

Chapter 4

UAS Platforms and
Integration

This chapter discusses details of implementation of the rt-R2U2 framework
on the Parallella board and its integration into the DragonEye UAS in
Section 4.1 Initial work for integration on-board the Swift UAS is also
included; that effort had to be suspended with the suspension of this UAS
platform. We present the instrumentation of the Arduino Flight software
for monitoring relevant software and sensor data. Section 4.2 presents a
detailed risk analysis, as a part of the Flight Readiness Review (FRR).
This chapter concludes with details concerning the actual hardware
integration in Section 4.3 and initial results of a series of bench flight
tests in Section 4.4.

4.1 Architecture and Implementation

4.1.1 Initial Work: Swift UAS and Beyond

Since we tested our rt-R2U2 framework by playing back all of the avail-
able recorded data streams from flight tests of the NASA Swift UAS
and analyzing those streams as if we were flying rt-R2U2 on-board, the
project team initially considered the NASA Swift UAS as the platform for
flight testing. However, after an internal NASA review and consultation
with the NASA Ames AFSRB review board per NASA NPR 7900.3C,
the lithium-based battery system assembled and delivered by the MLB
Company, the original SWIFT hand glider manufacturer, was not deemed
safe to operate at Moffett Field due to the lack of monitoring and pro-
tection in the system delivered by the company. Alternative systems
with adequate safety and monitoring functionality could be developed by
external companies but no off-the-shelf commercially available product
was identified. The team received outside quotes from companies for
constructing a custom propulsion battery system solution. Responding
companies included A123 Systems and the Tenergy Corporation. Unfor-

51

tunately, the required resources for acquisition, integration and testing
of a new battery system were significantly beyond the resources of this
project.

Three alternative UAS platforms were identified: the NASA SIERRA
UAS (Figure 4.1b), the NASA Viking-400 UAS (Figure 4.1a), and the
NASA Dragon Eye UAS (Figure 4.1c). These candidate vehicle systems
are developed and operated by the Earth Science division (Code SG) at
NASA Ames and would provide frequent future flight testing opportunities
for the IVHM payload as tag-along payloads as opportunities present
themselves. The specifications for the Viking and Dragon Eye vehicles
are shown in Table 4.1 and Table 4.2 below, respectively. The SIERRA
and Viking UAS vehicles are similar in size and specification. Both
aircraft are in the largest UAS size category (CAT-III per NASA NPR
7900.3C, Appendix I), providing validation and experimentation at the
largest CAT-III size. The SIERRA and NASA Viking 400 also share a
common control system and avionics infrastructures based on the Cloud
Cap Technologies Piccolo 2 autopilot system [4]. However, integration
of hardware and experimental software into the larger vehicles would
require a formal design, development and review process beyond the
resources and constraints of the Phase 1 activity, but appropriate for
future tasks (Phase 2 and beyond). Also, both vehicle platforms were
under development, and their programs are still in the integration and
testing phase as of the time of this report. The alternative NASA Dragon
Eye aircraft are small low-cost aircraft with the most frequent flight
opportunities. The Dragon Eyes provide the lowest cost of entry, provide
the ability for the project team to quickly develop and test concepts,
and allow the team full access to the interior components with the most
flexibility as a CAT-I UAS aircraft. However, the closed nature of their
autopilot and avionics system, and the export restriction designation of
the hardware would make experimentation difficult.

Characteristic Data

MGTOW (fuel + max payload) 540 pounds
Empty Weight 320 pounds

Wing Span 20.0 feet
Length 14.7 feet
Height 5 feet (Base of wheels to top of

vertical stabilizer)
Power Plant 498is Twin Boxer Engine @ 38HP
Endurance 8-12 hours

Cruise Sped 60 knots
Dash Speed 90 knots

Launch/Recovery Method Autonomous on wheeled gear

Table 4.1: Viking-400 UAS Specifications

52

(a) NASA Viking-400 UAS (b) NASA SIERRA UAS

(c) DragonEye UAS

Figure 4.1: NASA UAS Candidates for Flight Testing

The project team decided on a two-vehicle approach for Phase 1
activities. The project would target the NASA Dragon Eye UAS as the
primary Phase 1 platform for implementation and testing, but would
targeted the NASA Viking-400 UAS as the principle flight test vehi-
cle platform to support future Phase 2 and beyond flight experiments.
For the larger aircraft, the team developed a hardware ground-based
integration and testing facility for the Viking 400 aircraft. The team
members modified the Dragon Eye UAS, completely stripping out the
old stock avionics and replacing it with NASA and open-source autopilot
hardware/software that provided the team full access to the flight system
and onboard components. The team developed a duplicate iron-bird
ground test system for the modified Dragon Eyes (Figure 4.2), allowing
for simulation in the loop testing.

To support both Phase 1 and future activities, two ground-based
hardware-in-the-loop simulation systems were developed in this project.
For the Viking 400, the project team acquired a complete Piccolo au-
topilot system, providing hardware testing and integration that is would
support testing, verification, and validation on both the NASA Viking
and SIERRA platforms. The ground system includes a flight manage-
ment system, ground station, developers kit, flight sensors, antennas,
and ground/air radio modems. A ground-based training simulation
system was acquired and configured in building N269 at NASA Ames
Research Center; it is pictured in Figure 4.3. Team members took part

53

Characteristic Data

Airframe Mnf/Mdl AeroVironment Rq-14 DragonEye
Features fully autonomous operation, in-flight reprogram-

ming, small size, lightweight, bungee-launched,
waypoint navigation, laptop mapping, image
capture

Range 5 km
Speed 35 km/h

Op. Altitude (Typ.) 100-500 ft AGL
Span 3.75 ft (1.1 m)

Length 3 ft
Weight 5.9 lb (2.7 kg)

Launch Method Bungee-launched
Recovery Method Conventional horizontal landing

Table 4.2: DragonEye UAS Specifications

in a three-day on-site training and information session provided by L-3
Communications at NASA Ames.

4.1.2 Arduino-based DragonEye

Figure 4.4 illustrates the overall HW architecture of the DragonEye. It
is based on the APM 2.6 HW [3] and was previously used for test flights
without the rt-R2U2 monitoring. The only change to the previous flights
is the additional payload (the Parallella board) with a read-only UART
Interface. The Parallella board is highlighted in red in the schematic.

The main components are:

� APM Board: from 3DRobotics is the Arduino based Hardware,
where the Autopilot software APMPlane is running

� Power: LiPo Battery to power all the components, Current/Voltage
Monitor, Power Regulator to generate 5.3 Volts required by the
APM Board, Sub-Components and the Parallella Board

� Multiplexer Pololu721: Failsafe mechanism switches control of
the Motors/Servos between Autopilot-Software and the direct radio
signal from the operator

� Communication: RC receiver to directly control the Motors/Ser-
vos from Ground, Telemetry Modem for communication between
the Software and the Ground Control Station

� Sensors: Airspeed Probe, GPS, Compass, Barometer, Inertial
Navigation

54

Figure 4.2: Ironbird ground test system for modified Dragon Eyes

� Actuators: Two engines with motor controllers, two servos (left
and right elevon)

� Parallella Board: Performs Runtime Monitoring and Bayesian
Reasoning of the of the Autopilot SW states

The redesigned Dragon Eye flight system is shown in Figure 4.5
and has now become the standard avionics suite for all NASA Dragon
Eye vehicles operated at Ames. The system includes an open-source
Ardupilot Mega 2.6 (APM) autopilot, a mesh-enabled Digi 9Xtend radio
modem, and an Adapteva Parallella-16 secondary processor. The APM
software was modified for use in the Dragon Eye configuration, and
further modified for this project to include monitoring and communication
through UART2.

The modifications to the Dragon Eye vehicles were made in collab-
oration with NASA Code SG team members and subject to a number
of ground tests, included range, EMI/EMC, electrical, thermal, and en-
durance testing. Figure 5 below shows six of the Dragon Eye aircraft
undergoing these modifications. The full vehicle system was implemented,
tested, reviewed, and approved for flight testing, receiving all requirements
needed for flight testing per NASA NPR 7900.3C, including obtaining a
certificate of airworthiness from the Airfield Flight Safety Review Board
(AFSRB) and passing a Flight Readiness Review (FRR). The project
teams software was developed and tested in the Dragon Eye iron-bird,
then installed and tested on one of the Dragon Eye vehicle systems (tail
number DE 1029) and is ready for flight test data collection.

55

Figure 4.3: Ground simulation and testing system for the Viking 400
UAS

4.1.2.1 DragonEye RC-Mode

During normal operation, the autopilot software is in control of the
DragonEye motors/servos. Driven by periodic interrupt, a watchdog
routine regularly checks if the autopilot software is still running. If the
check fails, the software is entering a failsafe mode, where the controls
from the radio are directly forwarded to the motor controllers (see low-
level SW Failsafe in figure 4.6) every 20ms. The rest of the calculation
time is given to the autopilot software in order to recover itself. If the
check reports that the software is operational again, the Low-level SW
Failsafe is deactivated and the control is handed over to the Autopilot
Software again.

As illustrated in figure 4.6, the DragonEye is also equipped with
a HW-failsafe switch. In case of unexpected behavior, the hardware
multiplexer (see Mux Pololu 721 in schematic) can be directly controlled
by the ground operator on ground via the radio modem. In this case,
the airplane is in control of the operator and the Ardupilot Software and
Hardware is bypassed completely.

4.1.3 Hardware Components for rt-R2U2

4.1.3.1 Parallella Board

The Parallella board [1] is a credit-card sized computing platform created
by Adapteva with a Xilinx Zynq 7xxx SoC as Central Processing Unit. A

56

TITLE / SHEET NAME

TITLEBAR

NASA AMES RESEARCH CENTER, CODE TI
ADVANCED CONTROL AND EVOLVABLE SYSTEMS GROUP

DRAWN BY

COREY IPPOLITO

PAGE

0.0000 OF 5.0000

REV

A
THIS DOCUMENT CONTAINS INFORMATION THAT IS PROPRIETARY TO NASA AMES RESEARCH CENTER

AND SHOULD NOT BE USED WITHOUT EXPRESS WRITTEN PERMISSION OF NASA AMES RESEARCH
CENTER. COPYRIGHT 2006, NASA AMES RESEARCH CENTER, ALL RIGHTS RESERVED.

SIZE

B

SCALE

N/A

FILE NAME

DRAGONEYE SYSTEMS AND ELECTRICAL DIAGRAMS.VSD

Mux
Pololu 721

Power Regulator
Castle BEC 10A
5A cont., 5.3VDC

Ardupilot 2.6 (APM)

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

P
W

R

1
 2

 3
 4

 5
 6

 7
 8

O
U

T
P

U
T

S

IN
P

U
T

S
1

2
3

 4
 5

 6
 7

 8

G +V S S + -

I2C

Side GPS

JP
1

(IN
)

UART2

R
x

T
x

G
nd

5V

Top GPS
(N/C)

8 Mode

7 AUX3

6 AUX2

5 AUX1

4 RUD

3 THR

2 ELE

1 AIL

Analog input / ADC
(10bit/3.3V or 5V?)

Telem
(Note: red cable in)

GPS Antenna

+IN
GND

OUT

Digi 9Xtend
4.5-5.5VDC
(XXX Amps?)

Airspeed sensor
Breakout Board
MPXV7002DP

G
N

D
5VA

nalog

Airspeed Probe

Pdyn
Pstc

Antenna
(900Mhz)

External to Aircraft

RPSMA-Female

Tubing, ID = 0.063" (approx),
OD = 0.125

S
 V

 G

‘Top’ port is attached to
airspeed probe

S4
S3
S2
S1

O4
O3
O2
O1
M4
M3
M2
M1
SL

S + -

RC Receiver
Spektrum AR6260

BND/DAT

THR

AILELERDR

GEAR

AUX1

Voltage Divider:
R1 = 27kOhm
R2=5.1kOhm

Pwr/Gnd only,
signal N/C

To A1, Sig

To A1, Gnd

R1 R2

To voltage divider,
V pin is N/C

to 3

to 1

to 2

S + -

Vm

S
 V

 G

6 - GND
5 - GND
4 – BATV – ADC13
3 - CUR – ADC12
2 – JP_VCC
1 – JP_VCC

Diode
JPVcc - Vcc

USB

Varistor

R1

R
2

GPSMAG

A Connector, RC Servo 3 pin

Revision Notes
REVA – 3DR Radio System
REVB – Digi mesh RF modem
REVB.2 – updated RC RX
REVB.3 – Digi modem rewired to include CTS

Notes
1. Model C-Grid SL, maximum 3A per pin

3-wire power connector only, disconnect signal line,
use high-current servo wires

LEGEND

C

Modified 6-pin APM power cable, Attach pin 5/6 to ground, pin 1/2 to +V .
See Note 3.

Current/Voltage
Monitor Circuit

TBD

+BAT 1
2

 +BAT 3
4

+BAT 5
6

-BAT 7
8

-BAT 9
-BAT 10

+IN
GND

OUT +V
OUT GN

Motor Controller
ic-future-32.28K+

Motor Controller
ic-future-32.28K+

Right Motor
Aveox 1105-6Y

Left Motor
Aveox 1105-6Y

V1
V2
V3

V1
V2
V3

IN +V
IN GN

IN +V
IN GN

Elevon Right
JR NES 341

Elevon Left
JR NES 341

Vsense
Isense

NOT YET
IMPLEMENTED –

Junction point is not
accessible!

PowerPole
Connector

PowerPole
Connector

A

PWR
GND

PCBBattery Pack
LiPo, 6S3P126.5 mAh
22.2 VDC Nom
(18-25.2 VDC)

MOLEX
15-24-6107

MOLEX
15-24-7101

(wiring is
unknown)

+BAT
-BAT
+BAT
-BAT
+BAT
+BAT
-BAT
-BAT20A

Fuse

+BAT

-BAT

B

B
Modified 5-pin telemetry cable, ArduPilot P/N (???), Length (???)
Attach header (Molex XXX) and (Molex C-Grid SL)

5-
G

N
D

4-
N

/A
3-

R
X

2-
T

X
1-

5V

ANT

PWR (5.3VDC)

1-
G

N
D

2-
V

C
C

6-
D

O

5-
D

I

7-
S

H
D

N

9-
C

T
S

4 3 2 1
GND

B3

RPSMA-Male

Antenna Cable: RPSMA-
Male to RPSMA-Female

GND
APM-RX
APM-TX

Payload COM Connector

(To PA1.4,
Nose Assembly)

C

Note 2. Alternative board-mount
modifications to APM

Note 3. Optional
robustness against
JP1 failure

Parallella Board
rtR2U2 Framework

 GND

UART-RX

VCCGND

GND from Power
Regulator

4A
Fuse

Figure 4.4: DragonEye Schematic with Parallella Board Payload

Ubuntu Linux Distribution is running on the ARM-Cores which is used
to communicate and pre-process the data received from the Autopilot
Software. The Temporal Logic monitors are running in the SoC’s FPGA
section. There is also a High performance 16 or 64 Core Epiphany Co-
Processor on the board that can be used for high-performance calculations
(e.g. Software Evaluation of Bayesian Networks). The Parallella board
requires a heat sink.

4.1.3.2 Power Connection for Parallella Power

In order to power the Parallella Board, additional cables and a connector
to power the board is installed. The Parallella board uses +5VDC at up
to 2A.

4.1.3.3 UART Connection for Parallella Communication

Two additional wires (GND and APM-TX) are installed to send data
from the APM Board to the Parallella board (Figure 4.8. The UART2
port of the Arduino Flight computer is used to transmit the monitored
data.

57

TITLE / SHEET NAME

AVIONICS WIRING DIAGRAM, REV C

NASA AMES RESEARCH CENTER, CODE TI
ADVANCED CONTROL AND EVOLVABLE SYSTEMS GROUP

DRAWN BY PAGE

1 OF 6

REV

A
THIS DOCUMENT CONTAINS INFORMATION THAT IS PROPRIETARY TO NASA AMES RESEARCH CENTER AND

SHOULD NOT BE USED WITHOUT EXPRESS WRITTEN PERMISSION OF NASA AMES RESEARCH CENTER.
COPYRIGHT 2006, NASA AMES RESEARCH CENTER, ALL RIGHTS RESERVED.

SIZE

B

SCALE

N/A

FILE NAME

DRAGONEYE SYSTEMS AND ELECTRICAL DIAGRAMS - RTR2U2.VSD

Secondary Processor

(Adaptiva Parallella-16)

GND

RX

TX

Digi 9Xtend

4.5-5.5VDC

Voltage Monitor

Circuit

Mux
Pololu 721

Power Regulator

Castle BEC Pro 20A

10A cont., 5.3VDC

Ardupilot 2.6 (APM)

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

P
W

R

1

2

3

4

5

6

7

8

O
U

T
P

U
T

S

IN
P

U
T

S

1

2

3

4

5

6

7

8

G +V S
S + -

I2
C

Side GPS

J
P

1

(IN
)

UART2

R
x

T
x

G
n

d

5
V

Top GPS

(N/C)

8 Mode

7 AUX3

6 AUX2

5 AUX1

4 RUD

3 THR

2 ELE

1 A IL

Analog input / ADC
(10bit/3.3V or 5V?)

Telem
(Note: red cable in)

GPS Antenna
uBlox GPS with Compass

+IN

GND

OUT1

OUT2

Airspeed sensor

Breakout Board

MPXV7002DP

G
N

D

5
V

A
n

alo
g

Airspeed Probe

Pdyn

Pstc

External to Aircraft

Tubing, ID = 0.063" (approx), OD = 0.125

S
 V

 G

 Top port is attached to

airspeed probe

S4

S3

S2

S1

O4

O3

O2

O1

M4

M3

M2

M1

SL

- + S

RC Receiver
Spektrum AR6260

BND/DAT

THR

AIL

ELE

RDR

GEAR

AUX1

to 3

to 1

to 2

V m

6 - GND
5 - GND
4 – BATV – ADC13
3 - CUR – ADC12
2 – JP_VCC
1 – JP_VCC

Diode
JPVcc - Vcc

USB

Varistor

GPSMAG

??? Verify safe to leave GND f loating on APM T elem

A Connector, RC Servo 3 pin

Revision Notes

REVA – 3DR Radio System

REVB – Digi mesh RF modem

REVB.2 – updated RC RX

REVB.3 – Digi modem rewired to include CTS

REVC – Parallella board, voltage circuit

Notes

1. Model C-Grid SL, maximum 3A per pin

Power signals

LEGEND

C

Modif ied 6-pin APM power cable. Remove or cut power lines, pins 1 and 2.

+BAT 1
2

 +BAT 3
4

+BAT 5
6

-BAT 7
8

-BAT 9
-BAT 10

Motor Controller

ic-future-32.28K+

Motor Controller

ic-future-32.28K+

Right Motor

Aveox 1105-6Y

Left Motor

Aveox 1105-6Y

V1

V2

V3

V1

V2

V3

IN +V

IN GN

IN +V

IN GN

Elevon Right

JR NES 341

Elevon Left

JR NES 341

PowerPole

Connector

PowerPole

Connector

A

PWR

GND

PCBBattery Pack
LiPo, 6S3P

126.5 mAh

22.2 VDC Nom

(18-25.2 VDC)

MO LEX

15-24-6107

MO LEX

15-24-7101

(wiring i s

unknown)

+BAT
-BAT
+BAT
-BAT

+BAT
+BAT
-BAT
-BAT

20A

Fuse

B

B
Modif ied 5-pin telemetry cable, length 30cm, to Molex 2mm

10x2 header

5
-G

N
D

4
-N

/A

3
-R

X

2
-T

X

1
-5

V

ANT, RPSMA-Fem

PWR (5.3VDC)

1
-G

N
D

2
-V

C
C

6
-D

O

5
-D

I

7
-S

H
D

N

9
-C

T
S

GND

C

GND-COM

APM-RX

APM-TX

Payload COM
Connector

(To PA1.4, Nose
Assembly)

D

C

D Three-pin female latching connector (Molex WM2901-ND, WM9139-ND)

Stock Cable: SMA-Mal e

to quick disconnect

GND-PWR

5.3VDC

Patch Antenna

(900Mhz/ISM,

Molex)

Stock Cable (quick

disconnect to antenna)
Adapter: RPSMA-Mal e

to SM A-Fem ale

+BAT

-BAT

N/C

+5.3VDC

GND

External Power Adapter, Flush Panel

Mount, Length: 18"

2-P in Housing,

Mal e P in
Spektrum Flight
Logger SPM9540

+IN

GND

OUT +V

OUT GN

Vsense

Isense

GND

12inch cables

12
34
56
78
9-

Connector pin

diagram, looking

down on board.

GND

APM-RX

APM-TX

Payload COM
Connector

(Using Payload Data/
COM Connector)

D

GND

Power In

J12

(barrel)

GND-PWR

5.3VDC

SD Card

E thernet

5P0V (to J12)

SYS_5P0V

USB (N/C)

J14

Cable: 5", 22AWG

Radio Power

P IC/CIC
External Power

S
 V

 G

!
IF USING STANDARD 3-WIRE CABLES FOR POWER,

MAKE SURE SIGNAL LINES ARE DISCONNECTED

Jumper

In

To O1

To O2

THR

REL

LEL

- + S

New Infrastructure for rt-R2U2

Figure 4.5: DragonEye Schematic with Parallella Board Payload: Green
elements display changed to standard DragonEye configuration made to
incorporate rt-R2U2.

4.1.3.4 Modified Hardware Components

The Parallella board is mounted in one of the wings of the DragonEye,
which has enough space to hold the board. The power distribution is
changed in order to power the Parallella board. As shown in the schematic
in figure 4.4 additional wires are directly connected to the output of the
Power Regulator. Furthermore, 2 additional wires are connecting the
APM-UART Interface with the Parallella UART Interface. The RX-Line
of the APM stays unconnected in order to avoid any communication from
the Parallella to the APM Board.

4.1.4 Instrumentation of Flight Software

The Flight Software was branched from the DragonEye SW, that was
already tested during a couple of Flights. Figure 4.9 shows the altered SW-
components. The main SW modification is the addition of an additional
Operating System Task for gathering the data to monitor and send it to
the Parallella Board. The task runs at the lowest priority of all tasks and
has the same frequency as the default logging task, which is 10Hz, whereas
the higher priority tasks like reception of radio signal, high-level failsafe
checks, inertial navigation (ahrs) update, speed/altitude calculations,
stabilization or servo commands are called at a frequency of 50 Hz.

58

Dragoneye
Motor/Servo

Control

Dragoneye
Radio

Receiver

Lowlevel SW
Failsafe

Autopilot
Software

HW Failsafe

Figure 4.6: RC and SW Failsafe

Figure 4.7: Parallella Board
Size: 3.4” x 2.15”
Weight: 64.9 g

In the original MAVlink (Protocol to communicate with Ground
Control Station (GCS)) Driver, all telemetry was not only streamed
on the UART A, where the telemetry modem is connected, but also
the UART C. Hence, we modified the MAVlink driver to not send or
receive data on UART C, since UART C is used for the monitoring of
the Software. However, the UART driver itself was not modified and the
default Methods are used for Communication.

Besides the above-mentioned modifications, some parts of the code
are instrumented in order to gather data. In general, no calculations
(depending on configuration exceptions are possible) or other instructions
that could cause uncertain delays in the software were inserted with the
instrumentation since they are limited to read only (const) direct memory
copy instructions (passed by reference) to a (semaphore protected) buffer,
which is then read by the low-priority monitoring task and transmitted
on the UART Interface.

Wherever possible, the instrumentation is limited to a single copy
instruction during the initialization/instantiations of the static classes,

59

FPGA

TxD

GND

Control Unit

Logging

Memory Interface

Control

IMU

a
ct

u
a

to
rs

GPS

rt−R2U2

Control

Flight

HW

Com

BARO

F
il

te
rs

R
V

−
U

n
it

B
N

 r
ea

so
n

in
g

S
ig

n
al

 P
ro

ce
ss

R
R

−
U

n
it

te
m

p
o

ra
l

lo
g

ic

Figure 4.8: High-level architecture with read-only connection between
FSW and rt-R2U2

FSW

UART

T
A
S
K
1

T
A
S
K
2

T
A
S
K
n

M
O
N
IT
O
R

T
A
S
K

SCHEDULER

DRIVERS

PARALLELLA
FLIGHT

HARDWARE

T
A
S
K
3

Figure 4.9: Software Architecture

where we only copied the address of the variables that are of interest.
With this approach, we are limiting the timing influence of the SW by
the instrumentation to the point in time when the software is initialized.
The data that is stored at the gathered addresses are read only during
the monitoring task and never written. Where data is only available on
the stack, we inserted a single the read/copy by reference instruction in
the original code.

Since the scheduler data is only available on the stack, we also added
some copy instructions in order to collect task statistics. This task
statistics were used during the testing phase to check if any of the tasks
overrun their deadlines due to the instrumentation. They are also used to
detect any other bad timing behaviors during runtime with our monitor.

In order to avoid a delay during the transmission of the data via the
UART interface, only non-blocking transmission is used. Furthermore,
the available space in the transmission ring buffer is checked and the data
to transmit is immediately discarded if the buffer does not have enough
space at this time.

60

4.1.4.1 Instrumentation Requirements

For rt-R2U2 monitoring, information about the sensor and software
status is collected on a regular basis on the Arduino flight computer and
transmitted via read-only UART to the rt-R2U2 Parallella processing
board.

The following requirements must hold

� the instrumentation shall not influence the system behavior in a
negative way, cause delay of tasks, lock-ups or even system resets

� variables from numerous subsystems, components and classes should
be assembled

� a simple but robust serial communication protocol shall be used to
transmit the assembled monitoring data over UART

The instrumentation architecture consists of three major parts:

1. means for accessing important variables

2. a task to update the buffer, pack the buffer, and initiate transmission
of the buffer, and

3. CRC calculation, communication protocol

4.1.4.2 SW-safety design decisions

� all memory buffers are allocated statically; no dynamic memory
allocated,

� modification to existing code at as few places as possible,

� write-access to the monitoring buffer is guarded by a non-blocking
semaphore, i.e., in case the semaphore is taken, the task does not
block; rather the current attempted access is aborted and that data-
frame skipped. Thus, no other parts of the system is affected; in the
worst-case monitoring data might be lost (but a skipped-counter is
noting that situation)

� the monitoring buffer is kept to a minimal size, which is smaller
than the maximum transfer buffer size of 256Bytes.

� UART transfer times are considerably lower than the monitoring
task cycle time

� an efficient CRC generation enables error detection during trans-
mission of the buffer data

61

4.1.4.3 Accessing ArduPlane Variables and Buffer Storage

Important system variables can contain information about the software
(e.g., number of times a task did not finish in time or free memory),
sensor status and values (e.g., barometric altitude), as well as behavioral
data, e.g., mode of the aircraft, distance to next way-point, etc.

Different variables are places in different parts of the ArduPlane
memory:

� global variable, member of global data structure, or (global) function

� variable is part of a (static) object and can be accessed directly or
via accessor method

� variable is a local variable and only resides on the stack

� variable is local to ISR

Our approach enables simple and reliable access for almost all types
of variables. A number of data structures are defined and there is
one uniform routine rtr2u2 update signal to obtain the value and
update the buffer. Furthermore, during system initialization, the function
rtr2u2 register static address is used to set up access capabilities
for object members.

Variables of interest are listed in the enumeration rtr2u2 signal type.
These entries are used to access the corresponding variable during update,
packing of the buffer, as well as unpacking on the Parallella-board side.

Arduino FSW

global data

g.

GPS

Baro

Scheduler
Tasklist

UART driver

rtr2u2_at_buffer_last

Monitoring Task

rtr2u2_at_buffer_current
rtr2u2_signal_update()

rtr2u2_address_map

rt2ru2_register_static_address()

Figure 4.10: SW architecture details

4.2 Risk Analysis

For preparation of flight tests, a detailed risk analysis was performed as
part of the FRR process. The risk analysis includes hardware (Parallella

62

board) and its integration, software instrumentation of the flight software,
as well as risks during flight tests due to injected failures.

4.2.1 Risks and Mitigation—Introduction

The Risks and Mitigation are categorized by their likelihood and conse-
quence as defined by the U.S. Department of Transportation [47].

Figure 4.11: Risk assessment from DOT [47] showing risk assessment levels
(high–red, moderate–yellow, low–green) over likelihood vs. Consequence

Level Likelihood

A remote
B unlikely
C likely
D highly likely
E near certainty

Table 4.3: Levels for likelihood

4.2.2 Intended Flight Profiles

In order to test our monitoring and diagnosis capabilities, failures will be
injected into the system. Permanent failures are injected before the flight
starts and they will remain active during the entire duration of the flight.
Dynamically injected failures will be injected by the flight-computer at
a given time or by an operator command. These failures only concern
software failures.

63

Level Schedule Impact

a minimal or no impact no impact
b additional resources required;

able to meet
slight impact, loss of evalua-
tion data

c minor slip in key milestones;
not able to meet date

medium impact, loss of data,
necessary work on FSW or
operational procedures

d major slip in key milestone;
critical path impacted

minor/repairable damage to
airframe of hardware compo-
nents

e Can’t achieve key major pro-
gram milestone

crash of DragonEye; possible
damage to ground and safety
risk to personnel

Table 4.4: Levels for schedule

4.2.2.1 Permanent Failures

Hardware failures obviously produce more realistic scenarios. However,
the transition nominal-to-failure cannot be observed and it must be made
certain that the UAS can operate safely (takeoff, operator-controlled)
even with this failure.

Following scenarios will be included.

� covered GPS antenna: a low signal strength causes failing locks
with satellites and or a lower number of satellites to be received. In
general, that should produce navigation data of poor quality and
(potentially) some errors.

� disconnected GPS antenna: no satellite lock; should produce errors
in flight software

� disconnected GPS system: this produce errors in the flight software.

� covered/misaligned Pitot tube: causes erroneous measurements
of airspeed. Depending on the flight SW, some of the errors can
be compensated by GPS navigation. A fully covered Pitot tube
(famous example) might prevent the UAS to take off altogether

� wrong subsystem configuration (e.g., baud rate): perhaps we can
mimic the SWIFT magnetometer failure

� one bad engine: can/should this accomplished via hardware or via
software?

64

4.2.2.2 Dynamically Injected Failures

We only inject failures into FSW.

� Add delays in tasks (to trigger failsafe mode)

� Overflow in UART buffer

� UART flush (causes UART driver to stop operation)

� Cause a scheduler.panic (block SPI semaphore)

� Trigger battery.exhausted

� Delay timer task so that it is still running when it is called again

� add bias/noise to actuator and motor commands.

4.2.3 Structure of Risks

In the following sections, we list risks, severity/likelihood, and measures
for mitigation and risk avoidance.

Figure 4.12 gives an overview and points to the individual sections in
the Appendix, where the individual risk is discussed.

likely- consequence
hood a b c d e

E

D

C D.3.1
D.5.2
D.5.2

B D.4.1
D.5.1
D.5.2
D.5.2
D.5.3
D.5.4
D.5.5
D.5.6
D.5.7
D.5.8

D.2.4
D.4.2

A D.1.3 D.2.1
D.2.2

D.1.1
D.1.2

Figure 4.12: Overview of flight risks

65

4.3 Hardware Integration

(a) rt-R2U2 Target UAS Platforms

(b) Core DragonEye component (fuse-
lage, inner wing segments, and pro-
pellers) containing all electronics; access
panels on the underside of both wings
near the fuselage and a removable nose
cone enable installation of hardware in-
cluding our Parallella board

(c) Assembled DragonEye test
vehicle next to array of spare parts
in N-211 test laboratory

Figure 4.13: Indoor flight test photos from NASA Ames Building N-211-E:
six airframes were modified and tested for this project in collaboration
with NASA Ames Code SG

We investigated several available UAS platforms as candidates for our
first hardware demonstrations and test flights; these are pictured in Figure
4.13a. Initially, we targeted the NASA Swift UAS as a demonstration
platform; it is the 13-foot wingspan flying wing pictured on the far right.
However, following a NASA decision to suspend operations using the
Swift, we were required to focus on a new platform in order to continue
our research. We next targeted the NASA DragonEye UAS; it is the
3-foot wingspan hand-launched UAS held in the middle of Figure 4.13a.
This UAS had several advantages for hardware demonstrations and test
flights, including that NASA had a large number of available DragonEye

66

UAS and spare parts, some of which are pictured in Figure 4.13c.

(a) Parallella board with heat sink in
DragonEye wing.

(b) Parallella board compartment in
DragonEye wing covered for flight.

Figure 4.14: Photos of Parallella board integration in a DragonEye UAS
from the series of indoor test-stand flight tests.

While space inside the DragonEye was constrained, we were able to
fit the Parallella board in a compartment in the wing, near the fuselage,
as pictured in Figure 4.13b. The Parallella board would not fit inside
the fuselage itself due to the structure of the DragonEye, including the
custom-made battery which occupies most of the available space in the
fuselage, and the shape of the remaining space. We surmised that, had we
been able to mount and connect the Parallella board within the fuselage,
we would very likely have been able to cool it better, which was a major
concern with its placement. The increased airflow through the fuselage
due to a small vent in the DragonEye frame and the possibility of adding
a fan could have helped with cooling. The compartment in the wing
where we ultimately mounted the Parallella board was just large enough
to accommodate it; wiring had to be connected in a tight space. For
flight testing, both wing compartments are covered with a removable
skin, creating a smooth wing surface, as pictured in Figure 4.14.

4.4 Initial Flight Tests

The project team laid out a series of incremental flight tests that were
to be conducted from October to December of 2014 in the project plan.
The first of these flight tests occurred ahead of schedule in September of

67

(a) PI Kristin Yvonne Rozier and Ph.D.
Research Intern Quoc-Sang Phan assem-
bling a DragonEye on the test stand in
December, 2014.

(b) DragonEye in a test stand flight test,
with motors running, without fan. For
tests with a fan, the large fan was placed
on a table in front of the test stand.

Figure 4.15: Photos from series of indoor test-stand flight tests.

2014, with successful flight testing of the hardware configuration shown
in Figure 4.5 at Moffett Federal Airfield (NUQ), representing the Rev C
version of the hardware. Unfortunately, immediately after the September
2014 flight tests, UAS operations were unexpectedly suspended at Moffett
Federal Airfield due in part to a close-call incident and ensuing mishap
investigation (both related to aircraft operations from a separate and
unrelated project). As of the time of this report, flight operations have
not yet resumed. A dedicated vehicle, DragonEye tail number DE 1029,
has been set aside in this projects ready-to-fly configuration and the
project team is awaiting notification of the next flight test opportunity
and resumption of flight operations at NUQ, which may occur later in
2015.

4.4.1 Results of Initial Stand Flight Tests

During the performance period, the team did receive temporary clearance
for a series of indoor, stationary tests with all hardware integrated into
the DragonEye. For an initial test in the lab, the DragonEye was mounted
to a stand and power turned on. Power was tested and data from the
flight software were transmitted to the Parallella board. The computing
compartment was covered and the motors were kept off. In subsequent
tests, motors were turned on and a large fan was pointed at the DragonEye
to test properties like cooling in the presence of airflow over the wings
and operation of the components in the presence of vibrations from the
motors.

4.4.1.1 Temperature

Figure 4.16 shows the temperature of the FPGA chip on the Parallella
board from the initial flight test with the motors kept off. Since there

68

was no cooling via an air-stream, the unit heats up relatively quickly and
shuts down itself after approximately 15 minutes into the test. Shutdown
is initiated when the temperature reaches 87◦C. A warning is issued
whenever the temperature reaches 75◦C.

Figure 4.16: Development of chip temperature (y-axis) over time (x-axis,
in seconds). Computer compartment closed, engines off, no airflow along
the aircraft.

4.4.1.2 Raw Data

The raw data as transmitted to the Parallella board were recorded and
analyzed. This test demonstrates that the instrumentation of the flight
software is working correctly. Figure 4.17 shows temporal traces of the
measured airspeed (A), altitude (B), and task-related data (C) over a
scaled time (roughly 0.5 seconds per data point). Since the aircraft is
fixed to the stand, the airspeed is minimal and remains constant over time.
The altitude of the UAS is visible given a number of variables. bar-alt
is the barometric altitude (scaled), current-loc-alt gives the current
altitude of the AC as integrated by the state estimation filter. Finally,
the current altitude can be estimated by integrating the climb-rate,
i.e., alt = 20×

∫
climb rate dt. The constant 20 is a result of the 50Hz

update rate of this signal. All three signals are close together indicating
that the instrumentation and recording are working properly.

Finally, Figure 4.17 shows temporal traces of variables that are gov-
erned by the internal scheduler of the Arduino Flight software. For
selected tasksthe number of slippages and the accumulative maximum
delay are shown. Note that each task in the Arduino flight software is a
piece of code that performs a specific operation, e.g., reading a sensor
value, updating the AC position, generating an actuator signal. These
tasks are executed according to their frequency and allotted time require-
ments. Tasks that cannot be executed at their given time might not be

69

Figure 4.17: Temporal traces of airspeed (left), altitude (middle) and
data related to software tasks in the APM (right)

executed during this round or might get delayed. Whereas most of the
tasks have no slippage, task 25 and, in particular, task 31 is not executed
regularly and assembles delay times.

4.4.1.3 Reasoning Output: Temporal Logic

Figure 4.18: Values of time stamps as produced by the temporal reasoner.
A reset of time stamp values seem to have occurred around record number
3,300 through 3,700.

Figure 4.19 shows temporal traces of several temporal monitors. In
all cases, the values of the synchronous and asynchronous observers are
shown as well as Tasync, i.e., the time stamp for which the value of the
given asynchronous observer is valid. A simple diagonal corresponds to
a formula, which does not have to deal with longer and varying time
intervals. Nevertheless, a consistent change in Tasync as observed between
3000 and 4000 indicates some reset or glitch in the processing. This is
also evident in the sequence of time stamps as produced by the reasoner
as shown in Figure 4.18

70

Figure 4.19: Output of four temporal monitors

71

72

Chapter 5

Conclusion

In this NASA technical memorandum, we designed a novel System Health
Management framework, named rt-R2U2 after the FAA requirements
that it addresses. Our rt-R2U2 performs real-time assessment of the
system status of an embedded system, in this case a UAS, with respect
to temporal-logic-based specifications. This enables better statistical
reasoning to estimate its health at runtime than previous methods. To
ensure Realizability, we observe specifications given in two real-time
projections of LTL that naturally encode future-time requirements such
as flight rules. Real-time health modeling via Bayesian networks allows
mitigative reactions inferred from complex relationships between observa-
tions. To ensure Responsiveness, we run both an over-approximative,
but synchronous to the system’s real-time clock (RTC), and an exact,
but asynchronous to the RTC, observer in parallel for every specification.
To ensure Unobtrusiveness to flight-certified systems, we designed our
observer algorithms with a light-weight, FPGA-based implementation
in mind and showed how to map them into efficient, but reconfigurable
circuits.

We have designed an FPGA-based architecture for the runtime mon-
itoring and analysis of important safety and performance properties
on-board complex, intelligent, autonomous UAS. A combination of signal
processing and filtering, LTL and MTL runtime observers, as well as
Bayesian networks makes it possible to set up expressive, yet compact,
no-overhead health models. We discussed the details of implementation
of the temporal observers and the Bayesian networks on the FPGA hard-
ware. By using efficient algorithms and data structures for the realization
of the temporal observers [39] and arithmetic circuits [14] implemented
as special purpose engines, our health model can be executed in real
time; new or updated health models can be loaded onto the FPGA with-
out having to re-synthesize its entire configuration in a time-consuming
process.

Several case studies herein detailed our success using rt-R2U2 to
analyze NASA’s entire library of real flight data recorded by NASA’s

73

Swift UAS. Playing back the recorded flight data as if rt-R2U2 were
flying on-board the Swift, we were able to show that rt-R2U2 detected
the real faults that occurred, such as a failure of the laser altimeter, while
introducing no false positive fault identifications. We showed the correct
operation of rt-R2U2 in nominal conditions as well, for example detecting
the successful execution of flight commands. We also demonstrated
modeling and analysis capability on a health model that assesses the
(serial) communication between the main flight computer and an on-board
fluxgate magnetometer. Using real data from an actual test flight of the
NASA Swift UAS, we showed that rt-R2U2 could have quickly detected
a configuration problem of the fluxgate magnetometer unit as the cause
for a buffer overflow. Flying rt-R2U2 on this test flight would have saved
NASA considerable time and money as the original problem grounded
the aircraft for two days until the human operators could detect the root
cause of the problem.

Following decommissioning of the Swift and examination of alternative
test platforms, we successfully integrated rt-R2U2 into the architecture of
NASA’s DragonEye UAS. We documented our hardware integration, risk
analysis, and initial testing efforts on-board the DragonEye. We assessed
challenges with integration into this platform, including the potential for
the Parallella board to overheat during a flight test. We analyzed data
streams from the DragonEye, like with the Swift, and demonstrated both
that we were monitoring the system health correctly and not producing
false-positive identifications of faults.

We made considerable progress toward an in-the-air test-flight series
and have a DragonEye UAS configured and ready to start testing as soon
as test flights are allowed to resume at Moffett Field. Our accomplish-
ments include hardware integration into the DragonEye UAS, a single
initial test-flight to record data, a successful series of on-the-test-stand
test flights that demonstrate correct operation of the UAS, and comple-
tion of the necessary approval process for flight testing. In the future, we
plan to run a series of flight tests, first flying with nominal conditions
to check for and eliminate any false-positives, then progressing to the
controlled injection of faults to check that each fault is correctly identified
in real time by rt-R2U2.

We plan to integrate rt-R2U2 into additional UAS platforms, including
larger UAS platforms like the Swift, Viking, and Sierra UAS, and more
configurable small UAS platforms. One of the challenges we ran into with
integrating rt-R2U2 on-board the DragonEye UAS was the limited ability
to fix problems during test flights due to the tight fit of the Parallella
board and other components and the small access panels. During pre-
flight testing for one indoor flight test we detected that an essential data
cable must have a loose connection; since the connection was on the
underside of a wing-mounted board, we had to disassemble and then
re-assemble the autopilot to plug in the data cable, a labor-intensive
task that required hours to complete. A more modular and easily re-

74

configurable platform would be a better choice for future small UAS
tests.

The need for real-time, realizable, responsive, and unobtrusive system
health management is not limited to UAS. In the future, we plan to
integrate rt-R2U2 into many other embedded platforms, including rovers,
robots, and small satellites like CubeSATs. While rt-R2U2 provides
essential capabilities to enable such systems to operate intelligently and
autonomously while also ensuring they operate safely, this need is not
limited to totally autonomous air- and spacecraft. We envision integration
into manned or remote-piloted air- and spacecraft as well. For example,
rt-R2U2 could be used to simplify and improve the diagnosis capabilities
of cockpit systems in commercial aircraft. It could also provide a valuable
back-up to human eyes in remotely piloted systems, ensuring that the
human operators become aware of any disruptions to system health. In
addition to the current capability of identifying faults in real time, the
output of rt-R2U2 could be connected to an on-board decision-making
component, which could suggest or issue commands to respond to the
detected faults, such as mitigative actions or emergency landing.

To better enable adaptation of rt-R2U2 for new platforms and stream-
line integration into different hybrid hardware/software systems, we plan
to investigate formal techniques for automated or semi-automated syn-
thesis of the rt-R2U2 components. In our report, we briefly examined
the trade-offs in any compositional SHM framework like the one we have
introduced here: for any combination of data stream and off-nominal
behavior, where is the most efficient place to check for and handle that
off-nominal behavior? We plan to investigate automated assessment of
questions like whether a small wobble in a data value should be filtered
out via a standard analog filter, accepted by a reasonably lenient temporal
logic observer, or flagged by the BN back-end but then monitored for
a high enough frequency to indicate a real problem (perhaps in combi-
nation with other events) by a temporal logic observer taking as input
the outputs of the BN. Investigating efficient design patterns for compo-
sitional system health management could help automate the process of
mapping the types of checks we need to perform to their most efficient
implementations in rt-R2U2.

75

Bibliography

1. Adapteva: Parallella board homepage, http://www.parallella.

org/

2. Alur, R., Henzinger, T.A.: Real-time Logics: Complexity and Ex-
pressiveness. In: LICS. pp. 390–401. IEEE Computer Society Press
(1990)

3. APM Copter, D.R.: Apm wiki, http://copter.ardupilot.com/

wiki/apm25board_overview/

4. Backasch, R., Hochberger, C., Weiss, A., Leucker, M., Lasslop, R.:
Runtime verification for multicore SoC with high-quality trace data.
ACM Trans. Des. Autom. Electron. Syst. 18(2), 18:1–18:26 (2013)

5. Barre, B., Klein, M., Soucy-Boivin, M., Ollivier, P.A., Hallé, S.:
MapReduce for parallel trace validation of LTL properties. In: RV.
Lecture Notes in Computer Science, vol. 7687. Springer Verlag (2012)

6. Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace,
G.J., Rosu, G., Sokolsky, O., Tillmann, N. (eds.): Runtime Verification
- First International Conference, RV 2010, Proceedings, Lecture Notes
in Computer Science, vol. 6418. Springer Verlag (2010)

7. Basin, D., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime monitoring
of metric first-order temporal properties. In: FSTTCS. pp. 49–60
(2008)

8. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for monitoring
real-time properties. In: RV. Lecture Notes in Computer Science, vol.
7186, pp. 260–275. Springer Verlag (2011)

9. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for
runtime verification. J. Log. and Comput. 20(3), 651–674 (2010)

10. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for
LTL and TLTL. ACM Transactions on Software Engineering and
Methodology 20, 14:1–14:64 (2011)

76

http://www.parallella.org/
http://www.parallella.org/
http://copter.ardupilot.com/wiki/apm25board_overview/
http://copter.ardupilot.com/wiki/apm25board_overview/

11. Chavira, M., Darwiche, A.: Compiling Bayesian networks with local
structure. In: Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI). pp. 1306–1312 (2005)

12. Colombo, C., Pace, G., Abela, P.: Safer asynchronous runtime mon-
itoring using compensations. Formal Methods in System Design 41,
269–294 (2012)

13. Darwiche, A.: A differential approach to inference in Bayesian net-
works. Journal of the ACM 50(3), 280–305 (2003)

14. Darwiche, A.: Modeling and reasoning with bayesian networks. In:
Modeling and Reasoning with Bayesian Networks (2009)

15. Darwiche, A.: Modeling and Reasoning with Bayesian Networks.
Cambridge University Press, 1st edn. (2009), ISBN: 0521884381

16. Divakaran, S., D’Souza, D., Mohan, M.R.: Conflict-tolerant real-time
specifications in Metric Temporal Logic. In: TIME. pp. 35–42. IEEE
Computer Society Press (2010)

17. Drusinsky, D.: The temporal rover and the ATG rover. In: SPIN.
Lecture Notes in Computer Science, vol. 1885, pp. 323–330. Springer
Verlag (2000)

18. Finkbeiner, B., Kuhtz, L.: Monitor circuits for LTL with bounded
and unbounded future. In: RV, Lecture Notes in Computer Science,
vol. 5779, pp. 60–75. Springer Verlag (2009)

19. Fischmeister, S., Lam, P.: Time-aware instrumentation of embedded
software. IEEE Transactions on Industrial Informatics 6(4), 652–663
(2010)

20. Geilen, M.: An improved on-the-fly tableau construction for a real-
time temporal logic. In: CAV. pp. 394–406 (2003)

21. Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and
bayesian network reasoners on-board fpgas: Flight-certifiable sys-
tem health management for embedded systems. In: Runtime Ver-
ification - 5th International Conference, RV 2014, Toronto, ON,
Canada, September 22-25, 2014. Proceedings. pp. 215–230 (2014),
http://dx.doi.org/10.1007/978-3-319-11164-3_18

22. Havelund, K.: Runtime verification of C programs. In: TestCom/-
FATES. pp. 7–22. Springer Verlag (2008)

23. Ippolito, C., Espinosa, P., Weston, A.: Swift UAS: An electric UAS
research platform for green aviation at NASA Ames Research Center.
In: CAFE EAS IV (April 2010)

77

http://dx.doi.org/10.1007/978-3-319-11164-3_18

24. Johnson, S., Gormley, T., Kessler, S., Mott, C., Patterson-Hine, A.,
Reichard, K., Philip Scandura, J.: System Health Management: with
Aerospace Applications. Wiley & Sons (2011)

25. Kleene, S.C.: Introduction to Metamathematics. North Holland, 11th
edn. (1996), ISBN: 978-0720421033

26. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In:
Logics of Programs, Lecture Notes in Computer Science, vol. 193, pp.
196–218. Springer Verlag (1985)

27. Lu, H., Forin, A.: The design and implementation of P2V, an ar-
chitecture for zero-overhead online verification of software programs.
Tech. Rep. MSR-TR-2007-99, Microsoft Research (2007)

28. Majzoobi, M., Pittman, R.N., Forin, A.: gnosis: Mining fpgas for
verification (2011)

29. Maler, O., Nickovic, D., Pnueli, A.: On synthesizing controllers from
bounded-response properties. In: CAV. Lecture Notes in Computer
Science, vol. 4590, pp. 95–107. Springer Verlag (2007)

30. Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of
discrete, timed and continuous behaviors. In: Pillars of Comp. Science.
pp. 475–505. Springer Verlag (2008)

31. Mengshoel, O.J., Chavira, M., Cascio, K., Poll, S., Darwiche, A.,
Uckun, S.: Probabilistic model-based diagnosis: An electrical power
system case study. IEEE Trans. on Systems, Man and Cybernetics,
Part A: Systems and Humans 40(5), 874–885 (2010)

32. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview
of the mop runtime verification framework. International Journal on
Software Tools for Technology Transfer 14(3), 249–289 (2012)

33. Musliner, D., Hendler, J., Agrawala, A.K., Durfee, E., Strosnider,
J.K., Paul, C.J.: The challenges of real-time AI. IEEE Computer
28, 58–66 (January 1995), citeseer.comp.nus.edu.sg/article/

musliner95challenges.html

34. Pearl, J.: A constraint propagation approach to probabilistic reason-
ing. In: UAI. pp. 31–42. AUAI Press (1985)

35. Pellizzoni, R., Meredith, P., Caccamo, M., Rosu, G.: Hardware
runtime monitoring for dependable COTS-based real-time embedded
systems. RTSS pp. 481–491 (2008)

36. Pike, L., Niller, S., Wegmann, N.: Runtime verification for ultra-
critical systems. In: RV. Lecture Notes in Computer Science, vol. 7186,
pp. 310–324. Springer Verlag (2011)

78

citeseer.comp.nus.edu.sg/article/musliner95challenges.html
citeseer.comp.nus.edu.sg/article/musliner95challenges.html

37. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Copilot: monitoring
embedded systems. Innovations in Systems and Software Engineering
9(4), 235–255 (2013)

38. Reinbacher, T., Függer, M., Brauer, J.: Real-time runtime verification
on chip. In: RV. Lecture Notes in Computer Science, vol. 7687, pp.
110–125. Springer Verlag (2012)

39. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based
runtime observer pairs for system health management of real-time
systems. In: Proceedings of the 20th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). Lecture Notes in Computer Science (LNCS), vol. 8413, pp.
357–372. Springer-Verlag (April 2014)

40. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based
runtime observer pairs for system health management of real-time
systems. In: Tools and Algorithms for the Construction and Analysis
of Systems - 20th International Conference, TACAS 2014, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings. pp. 357–
372 (2014), http://dx.doi.org/10.1007/978-3-642-54862-8_24

41. Schumann, J., Mbaya, T., Mengshoel, O.J., Pipatsrisawat, K., Srivas-
tava, A., Choi, A., Darwiche, A.: Software health management with
Bayesian networks. Innovations in Systems and Software Engineering
9(2), 1–22 (2013)

42. Schumann, J., Mengshoel, O.J., Mbaya, T.: Integrated software and
sensor health management for small spacecraft. In: Proc. of the 2011
IEEE Fourth International Conference on Space Mission Challenges
for Information Technology. pp. 77–84. SMC-IT ’11 (2011)

43. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya,
T., Ippolito, C.: Towards real-time, on-board, hardware-supported
sensor and software health management for unmanned aerial systems.
In: Proceedings of the 2013 Annual Conference of the Prognostics and
Health Management Society (PHM2013). pp. 381–401 (October 2013)

44. Srivastava, A.N., Schumann, J.: Software health management: a ne-
cessity for safety critical systems. Innovations in Systems and Software
Engineering 9(4), 219–233 (2013)

45. Tabakov, D., Rozier, K.Y., Vardi, M.Y.: Optimized temporal moni-
tors for SystemC. Formal Methods in System Design 41(3), 236–268
(2012)

46. Thati, P., Roşu, G.: Monitoring algorithms for Metric Temporal
Logic specifications. ENTCS 113, 145–162 (2005)

79

http://dx.doi.org/10.1007/978-3-642-54862-8_24

47. U.S. Department of Transportation: Risk assessment, http://

international.fhwa.dot.gov/riskassess/risk_hcm06_03.cfm

80

http://international.fhwa.dot.gov/riskassess/risk_hcm06_03.cfm
http://international.fhwa.dot.gov/riskassess/risk_hcm06_03.cfm

Appendix A

Proofs of Correctness

Theorem A1 (Correctness of the Observer for ¬ϕ) For any exe-
cution sequence 〈Tϕ〉, the observer stated in Algorithm 7 implements
en |= ¬ϕ.

Algorithm 7 Observer for ¬ϕ.

1: At each new input Tϕ:
2: Tξ ← (¬ Tϕ.v, Tϕ.τe)
3: return Tξ

Proof. The theorem follows immediately from the definition of en |= ¬ϕ
and the definition of an execution sequence.

Theorem A2 (Correctness of the Observer for τ ϕ) For any ex-
ecution sequence 〈Tϕ〉, the observer stated in Algorithm 8 implements
en |= τ ϕ.

Algorithm 8 Observer for τ ϕ. Initially, m↑ϕ = mτs = 0.

1: At each new input Tϕ:
2: Tξ ← Tϕ
3: if transition of Tξ occurs then
4: m↑ϕ ← mτs

5: end if
6: mτs ← Tϕ.τe + 1
7: if Tξ holds then
8: if m↑ϕ ≤ (Tξ.τe − τ) holds then
9: Tξ.τe ← Tξ.τe − τ

10: else
11: Tξ ← (,)
12: end if
13: end if
14: return Tξ

81

Proof. We first observe the equivalences

en |= τ ϕ ⇔ en |= �[0,τ] ϕ,

⇔ en |= ¬(trueU[0,τ] ¬ϕ),

⇔ ¬(∃i(i ≥ n) : (i− n ∈ [0, τ] ∧ ei |= ¬ϕ ∧ ∀j(n ≤ j < i) : ej |= true)),
⇔ ¬(∃i(i ≥ n) : (i− n ∈ [0, τ] ∧ ei |= ¬ϕ ∧ true)),
⇔ ¬(∃i(i ≥ n) : (i− n ∈ [0, τ] ∧ ei |= ¬ϕ)),
⇔ ∀i(i ≥ n) : ¬(i− n ∈ [0, τ] ∧ ei |= ¬ϕ),
⇔ ∀i(i ≥ n) : (¬(i− n ∈ [0, τ]) ∨ ei |= ϕ),
⇔ ∀i(i ≥ n) : (i− n ∈ [0, τ]→ ei |= ϕ),
⇔ ∀i : (i ∈ [n, n+ τ]→ ei |= ϕ).

Note that interval [n, n+ τ] is never empty, since n, τ ∈ N0. Therefore,
the equivalences above holds iff a transition of ϕ occurred at a time
at least n and no transition of ϕ occurred since then until time n+ τ
(ensured by lines 3 and 6 and the valid (m↑ϕ, Tξ, τ) check in line 8 of
Algorithm 8).

The theorem follows.

Theorem A3 (Correctness of the Observer for �J ϕ) For any ex-
ecution sequence 〈Tϕ〉, the observer stated in Algorithm 9 implements
en |= �J ϕ.

Algorithm 9 Observer for �J ϕ.

1: At each new input Tϕ:
2: Tξ ← dur(J) Tϕ
3: if (Tξ.τe −min(J) ≥ 0) then
4: Tξ.τe ← Tξ.τe −min(J)
5: else
6: Tξ ← (,)
7: end if
8: return Tξ

Proof. We first observe the equivalences

en |= �J ϕ

⇔ en |= ¬ (trueU[min(J),max(J)] ¬ϕ),

⇔ ∀i(i ≥ n) : (i− n ∈ [min(J),max(J)]→ ei |= ϕ),

⇔ ∀i : (i ∈ [n+ min(J), n+ max(J)]→ ei |= ϕ). (A1)

By Theorem A2 we have

en |= τ ϕ⇔ ∀i : (i ∈ [n, n+ τ]→ ei |= ϕ).

82

With τ = dur(J) we arrive at

en |= dur(J) ϕ,

⇔ ∀i : (i ∈ [n, n+ dur(J)]→ ei |= ϕ),

⇔ ∀i : (i ∈ [n, n+ max(J)−min(J)]→ ei |= ϕ). (A2)

By the Equivalences A1 and A2 we observe that both en |= �J ϕ and
en |= τ ϕ require that ϕ holds for an interval of length max(J)−min(J) =
dur(J), however, en |= �J ϕ requires that ϕ holds for an interval that
is min(J) ahead (i.e., in the future) of en |= τ ϕ. Subtracting min(J)
(equals to a shift into the past by min(J) time stamps) from

en |= dur(J) ϕ⇔ ∀i : (i ∈ [n, n+ max(J)−min(J)]→ ei |= ϕ),

yields

∀i : (i−min(J) ∈ [n, n+ max(J)−min(J)]→ ei |= ϕ),

⇔ ∀i : (i ∈ [n+ min(J), n+ max(J)−min(J) + min(J)]→ ei |= ϕ),

⇔ ∀i : (i ∈ [n+ min(J), n+ max(J)]→ ei |= ϕ),

⇔ �J ϕ (cf. Equation A1).

Since Algorithm 9 instantiates a τ ϕ observer in line 2 and subtracts
min(J) from the result, it establishes the required equivalence. The check
in line 3 of Algorithm 9 prevents the observer from returning execution
sequences where Tξ.τe 6∈N0.

The theorem follows.

Theorem A4 (Correctness of the Observer for ϕ ∧ ψ) For any two
execution sequences 〈Tϕ〉, 〈Tψ〉, the observer stated in Algorithm 10 im-
plements en |= ϕ ∧ ψ.

Proof. To prove the correctness of Algorithm 10, it needs to be shown
that both the truth value Tξ.v and the time stamp Tξ.τe of the output
tuple Tξ, generated in line 14 of Algorithm 10, are correct – for arbitrary
inputs.

a) Correctness of Tξ.v. The proof is by showing that a correct output
verdict Tξ.v of Algorithm 10 is equivalent to the result of a conjunction
of the inputs encoded in Kleene logic [25]. We then enumerate the inputs
by means of a truth table and verify that the proposed algorithm gener-
ates the correct outputs. Recall that the observer reads tuples (Tϕ, Tψ)
from the two synchronization queues qϕ and qψ and that the verdicts
Tϕ.v, Tψ.v ∈ {true, false}. Depending on the state of the synchronization
queues, we distinguish the following cases:

83

Algorithm 10 Observer for ϕ ∧ ψ.

1: At each new input (Tϕ, Tψ):
2: if Tϕ holds and Tψ holds and qϕ 6= () holds and qψ 6= () holds then
3: Tξ ← (true,min(Tϕ.τe, Tψ.τe))
4: else if ¬Tϕ holds and ¬Tψ holds and qϕ 6= () holds and qψ 6= () holds

then
5: Tξ ← (false,max(Tϕ.τe, Tψ.τe))
6: else if ¬Tϕ holds and qϕ 6= () holds then
7: Tξ ← (false, Tϕ.τe)
8: else if ¬Tψ holds and qψ 6= () holds then
9: Tξ ← (false, Tψ.τe)

10: else
11: Tξ ← (,)
12: end if
13: dequeue(qϕ, qψ, Tξ.τe)
14: return Tξ

Case (i): if both qϕ and qψ are non-empty (i.e., both elements in
the input (Tϕ, Tψ) are available), the output is true only in case
Tϕ.v = Tψ.v = true and false otherwise.

Case (ii): if both qϕ and qψ are empty, the input tuple (Tϕ, Tψ) is
empty too, thus, the observer cannot produe a new output. We
map this to a maybe output in Kleene logic representation.

Case (iii): if either qϕ or qψ is empty, one element of the input
tuple (Tϕ, Tψ) is empty, and the result of the observer depends on
the other, non-empty input.

We observe that with the encoding

a =

true if Tϕ.v = true ∧ qϕ 6= (),
false if Tϕ.v = false ∧ qϕ 6= (),
maybe otherwise.

b =

true if Tψ.v = true ∧ qψ 6= (),
false if Tψ.v = false ∧ qψ 6= (),
maybe otherwise.

the expected output verdict Tξ.v of a ϕ ∧ ψ observer is exactly the result
of a ∧ b in Kleene logic.

Table A1 enumerates the possible inputs of the algorithm in terms
of a truth table. For example, in case Tϕ.v is false, Tψ.v is true, syn-
chronization queues qϕ and qψ are non-empty (see #2 in Table A1), the
expected output is a ∧ b = true ∧ false = false. In case Tϕ.v is false,
Tψ.v is true, and queue qϕ is empty, and qψ is non-empty (see #10 in
Table A1), the expected output is a ∧ b = maybe ∧ true = maybe.

84

It remains to be shown that Algorithm 10 generates these outputs.
We study the column “Outputs of Algorithm 10” of Table A1, which
states Tξ.v as generated by Algorithm 10 and the corresponding line
number of the respective assignments. For example, in case Tϕ.v is false
and Tψ.v is true and synchronization queues qϕ and qψ are non-empty
(see #2 in Table A1), the algorithm returns Tξ.v = false, matching the
expected output.

We have shown the correctness of the truth value Tξ.v of the output
tuple Tξ of Algorithm 10 for all possible inputs; it remains to be shown
that the corresponding time stamp Tξ.τe of the output tuple Tξ is correct
too.

b) Correctness of Tξ.τe. For analogous arguments as above, in cases
where the verdict of the computed output tuple Tξ.v is maybe, the
corresponding time stamp Tξ.τe is undefined too, see #7,8,10,12-16 in
Table A1. For the remaining input conditions we distinguish the following
two cases:

Case (i): if either qϕ or qψ is empty and the verdict Tξ.v of the
output tuple is false, the time stamp of the output is the time
stamp of the non-empty element in the input tuple (Tϕ, Tψ), see
#5,6,9,11 in Table A1.

Case (ii): if neither qϕ nor qψ is empty, the time stamp of the
output depends on the truth values of Tϕ.v and Tψ.v, see #2-4 in
Table A1. In the special case that both Tϕ.v and Tψ.v are false
(#1 in Table A1), the time stamp of the output can be extended to
the maximum of the time stamps found in the input tuple (Tϕ, Tψ),
see #1 in Table A1.

For example, consider the queue contents qϕ = ((false, 1), (true, 10))
and qψ = ((false, 5), (true, 8)). When reading the input ((false, 1),
(false, 5)) the observer can already output (false, 5); regardless of the
truth values of Tϕ for times n ∈ [2, 5], the result will be false. Applying
dequeue(qϕ, qψ, 5) yields qϕ = ((true, 10)) and qψ = ((true, 8)).

For similar arguments, the scenario described in #2,3 of Table A1
requires to output the time stamp of the element in the input tuple
(Tϕ, Tψ) whose truth value is false. If both Tϕ.v and Tψ.v are true
(#4 in Table A1), the output can only be resolved until the mini-
mum (i.e., the earlier) of the time stamps found in the input tuple
(Tϕ, Tψ). For example, consider the queue content: qϕ = ((true, 1),
(false, 10)) and qψ = ((true, 5), (false, 8)). When reading the input
((true, 1),(true, 5)) the observer needs to output (true, 1). The next
input ((false, 10),(true, 5)) generates the output (false, 10), i.e., the
output is false for times n ∈ [2, 10]. Results for the remaining cases are
derived in a similar way.

85

Inputs Expected result Outputs of Algorithm 10
ϕ ψ qϕ qψ Tξ.v Tξ.τs (Tξ.v, Tξ.τe) line#

1 0 0

0 0

0 max(time stamp ϕ, time stamp ψ) (false,max(Tϕ.τe, Tψ.τe)) 5
2 0 1 0 time stamp of ϕ (false, Tϕ.τe)) 7
3 1 0 0 time stamp of ψ (false, Tψ.τe)) 9
4 1 1 1 min(time stamp ϕ, time stamp ψ) (true,min(Tϕ.τe, Tψ.τe)) 3

5 0 0

0 1

0 time stamp of ϕ (false, Tϕ.τe)) 7
6 0 1 0 time stamp of ϕ (false, Tϕ.τe)) 7
7 1 0 ? - (,) 11
8 1 1 ? - (,) 11

9 0 0

1 0

0 time stamp of ψ (false, Tψ.τe)) 9
10 0 1 ? - (,) 11
11 1 0 0 time stamp of ψ (false, Tψ.τe)) 9
12 1 1 ? - (,) 11

13 0 0

1 1

? - (,) 11
14 0 1 ? - (,) 11
15 1 0 ? - (,) 11
16 1 1 ? - (,) 11

Table A1: Enumeration of input combinations, expected results, and
outputs of Algorithm 10. For brevity, we use the abbreviations: ϕ = Tϕ.v,
ψ = Tψ.v, and write 0 for false, 1 for true, and ? for maybe. qϕ is set
“1” iff qϕ = () and qψ is set “1” iff qψ = ().

It remains to be shown that Algorithm 10 generates these time stamps.
Again, we study the column “Outputs of Algorithm 10” of Table A1,
which states Tξ.τe as generated by Algorithm 10 and the corresponding
line number of the respective assignment. For example, in case Tϕ.v is
false and Tψ.v is true and synchronization queues qϕ, qψ are non-empty
(see #2 in Table A1), the algorithm returns Tξ.τe = Tϕ.τe, matching the
expected output. The same holds for the remaining cases.

We have shown the correctness of both the output verdict Tξ.v and the
time stamp Tξ.τe of the output tuple Tξ of Algorithm 10 for all possible
inputs.

The theorem follows.

Theorem A5 (Correctness of the Observer for ϕUJ ψ) For any two
execution sequences 〈Tϕ〉, 〈Tψ〉, the observer stated in Algorithm 12 im-
plements en |= ϕUJ ψ.

The observer for ϕUJ ψ, as stated in Algorithm 12, expects a tuple
(Tϕ, Tψ) as input. Similar to the observer for ϕ ∧ ψ, Tϕ of this tuple is
an element from the execution sequence 〈Tϕ〉 stored in synchronization
queue qϕ and Tψ of this tuple is an element from the execution sequence
〈Tψ〉 stored in synchronization queue qψ. Input tuples are processed in a
lockstep mode to ensure that the observer outputs only a single tuple
at each run, thereby, avoiding additional output buffers, which would
account for additional hardware resources. This lockstep mode is achieved
by the following transformation on the input tuple (Tϕ, Tψ): (Tϕ, Tψ)
is transformed into (possibly several) tuples (T ′ϕ, T

′
ψ), (T ′′ϕ , T

′′
ψ), . . . , such

86

Algorithm 12 Observer for ϕUJ ψ. Initially, mpre = m↑ϕ = 0, m↓ϕ =
−∞, and p = false.

1: At each new input (Tϕ, Tψ) in lockstep mode:
2: if transition of Tϕ occurs then
3: m↑ϕ ← τe − 1
4: mpre ← −∞
5: end if
6: if transition of Tϕ occurs and Tψ holds then
7: Tϕ.v, p ← true, true
8: m↓ϕ ← τe
9: end if

10: if Tϕ holds then
11: if Tψ holds then
12: if (m↑ϕ + min(J) < τe) holds then
13: mpre ← τe
14: return (true, τe −min(J))
15: else if p holds then
16: return (false,m↓ϕ)
17: end if
18: else if (mpre + dur(J) ≤ τe) holds then
19: return (false,max(m↑ϕ, τe −max(J)))
20: end if
21: else
22: p ← false
23: if (min(J) = 0) holds then
24: return (Tψ.v, τe)
25: end if
26: return (false, τe)
27: end if
28: return (,)

that T ′ϕ.τe = T ′ψ.τe holds and for the time stamp T ′′ϕ .τe of the next tuple
(T ′′ϕ , T

′′
ψ) it holds that T ′′ϕ .τe = T ′ϕ.τe + 1.

The motivation for the lockstep mode stems from the intended hard-
ware implementation of the observer. To illustrate, we assume the
existence of a correct observer, possibly implemented in software, for
ϕU[2,3] ψ and that the execution sequences stored in the two synchroniza-
tion queues qϕ and qψ describe the executions en |= ϕ and en |= ψ over
times n ∈ [0, 25] as shown below:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

en |= ϕ

en |= ψ

87

In a non-lockstep mode implementation, the observer for en |=
ϕU[2,3] ψ may read the following sequence of tuples (Tϕ, Tψ) from qϕ
and qψ

A1: ((false, 9), (false, 9)), ((true, 19), (true, 19)), ((false, 21),
(true, 21)), ((false, 25), (false, 25)). The observer will produce the fol-
lowing outputs:

1. For input ((false, 9), (false, 9)), the observer returns (false, 9).

2. For input ((true, 19), (true, 19)), the observer returns (true, 17).

3. For input ((false, 21), (true, 21)), the observer returns (true, 18)
and (false, 21).

4. For input ((false, 25), (true, 25)), the observer returns (false, 25).

To comply with our Responsiveness requirement, our observers
need to ensure that any input tuple is processed within a tight time
bound. This includes reading a new input tuple from the synchronization
queues, calculating the output tuple, and committing this new tuple to
the observer’s output. This is feasible for inputs (1), (2), and (4) in the
example above where one output tuple is generated at a time. For input
(3), however, the observer needs to output two tuples at the same time.

To implement this functionality in hardware an additional output
buffer to temporarily store the second tuple while the first one is com-
mitted is required. This accounts for an additional clock cycle to commit
the second tuple (false, 21) to the output and additional hardware re-
sources to implement and control this buffer. To avoid a blowup of the
hardware design, we opted to design our ϕUJ ψ observer to work on
inputs given in lockstep mode. For input (3) from the example above,
our implementation will transform the input ((false, 21), (true, 21)) into
((false, 20), (true, 20)) (3.1) and ((false, 21), (true, 21)) (3.2) and calcu-
late:

3.1 For input ((false, 20), (true, 20)), the observer in Algorithm 12
returns (true, 18).

3.2 For input ((false, 21), (true, 21)), the observer in Algorithm 12
returns (false, 21).

The lockstep mode, thus, helps us to guarantee that, for any input
tuple, the observer is not required to output multiple tuples. This
avoids additional hardware overhead for output buffers and meets our
Unobtrusiveness requirement.

Proof. Theorem A5 holds if we can show that both directions of the state-
ment “The observer for ϕUJ ψ stated in Algorithm 12 returns (true, n)
iff en |= ϕUJ ψ” hold:

A1To simplify the discussion (Tϕ, Tψ) is such that Tϕ.τe = Tψ.τe.

88

If: The observer for ϕUJ ψ returns (true, n) if en |= ϕUJ ψ holds.

Only If: en |= ϕUJ ψ holds if the observer for ϕUJ ψ returns
(true, n).

If we show the correctness of both statements, Theorem A5 holds. We
will start by proving the following lemma that helps us to simplify the
proof of Theorem A5.

Lemma A6 (Unrolling) The observer in Algorithm 12 decides the
truth value of en |= ϕUJ ψ, where min(J) > 0, at a time n′ bounded
by n′ ≤ n+ max(J).

Proof. From the definition of en |= ϕUJ ψ we have

en |= ϕUJ ψ
⇔ ∃i(i ≥ n) : (i− n ∈ J ∧ ei |= ψ ∧ ∀j(n ≤ j < i) : ej |= ϕ),

⇔ ∃i(i ≥ n) : (i− n ∈ [min(J),max(J)] ∧ ei |= ψ ∧ ∀j(n ≤ j < i) :

ej |= ϕ),

⇔ ∃i(i ≥ n) : (i ∈ [n+ min(J), n+ max(J)] ∧ ei |= ψ ∧ ∀j(n ≤ j < i) :

ej |= ϕ). (A3)

In order to build a correct observer algorithm, we can incrementally
step through all i (i.e., τe) starting from n until we (a) find a location i
where Equation A3 holds (then the result is en |= ϕUJ ψ), or (b) we have
reached an i > n + max(J) where Equation A3 cannot hold anymore
because i6∈[n+ min(J), n+ max(J)] (then the result is en 6|=ϕUJ ψ).

We now show that when reaching i = n+ max(J), the observer stated
in Algorithm 12 has already decided the truth value of en |= ϕUJ ψ. We
distinguish three cases depending on the value of i:

Case (i): n ≤ i < n + min(J), since i 6∈[n + min(J), n + max(J)],
Equation A3 does not hold, but might hold at a later i, i.e., at i >
n + min(J). Observe that this is captured by the check at line 12 in
Algorithm 12. For n ≤ i < n+ min(J) the check does not hold and the
Algorithm will not output a verdict for en |= ϕUJ ψ, i.e., returns (,)
on line 28.

Case (ii): n+ min(J) ≤ i ≤ n+ max(J), since i ∈ [n+ min(J), n+
max(J)], Equation A3 can hold if we find an i for which ei |= ψ and
∀j(n ≤ j < i) : ej |= ϕ holds. We distinguish two cases: we first find an
i where ϕ does not hold or we first find an i for which both ei |= ψ and
∀j(n ≤ j < i) : ej |= ϕ hold. For the former, Equation A3 does not hold.
The algorithm immediatelly returns (false, τe) in line 26 (since Tϕ does
not hold). For the latter, Equation A3 holds, and the algorithm returns
(true, τe −min(J)) in line 14. By our assumptions, we have τe = i and
τe −min(J) = n.

89

Note that the Algorithm returns a verdict at a time earlier than
i = n+ max(J) in both cases (i) and (ii).

Case (iii): i = n + max(J) + 1, since i6∈[n + min(J), n + max(J)],
Equation A3 does not hold, and cannot hold for any later i. Note that
this is captured by the predicates in lines 18 and 19.

Combining the arguments of i-iii), we have that Algorithm 12 decides
the truth value of en |= ϕUJ ψ where min(J) > 0 at a time n′ not later
than n′ ≤ n+ max(J) in all cases.

The lemma follows.

We continue with the proof of Theorem A5. We first show that:

If: The observer for ϕUJ ψ returns (true, n) if en |= ϕUJ ψ holds.
Assume by means of a contradiction that en |= ϕUJ ψ does not hold and
the observer returns (true, n). We observe that Algorithm 12 may return
tuples T where T.v = true either in line 14 (case (i)) or in line 24 (case
(ii)).

Case (i): the observer returns (true, τe − min(J)) in line 14. We
have witnessed that both Tϕ and Tψ held at time τe (lines 10 and 11)
and that (m↑ϕ + min(J) < τe) holds. Observe that this implies that
∀j(τe −min(J) ≤ j < τe) : ej |= ϕ holds too. Further, by the definition
of en |= ϕUJ ψ we have

en |= ϕUJ ψ ⇔ ∃i(i ≥ n) : (i− n ∈ J
∧ei |= ψ ∧ ∀j(n ≤ j < i) : ej |= ϕ),

⇔ ∃i(i ≥ n) : (i− n ∈ [min(J),max(J)]
∧ei |= ψ ∧ ∀j(n ≤ j < i) : ej |= ϕ).

we may choose i = τe and substitute n = τe −min(J). Combined with
the observation from above, we arrive at

eτe−min(J) |= ϕUJ ψ ⇔ (min(J) ∈ [min(J),max(J)] ∧ eτe |= ψ ∧ true),
⇔ true ∧ eτe |= ψ ∧ true⇔ eτe |= ψ.

Since we can reach line 14 only in case Tψ holds (ensured by line 11)
at time τe, we have e(τe−min(J)) |= ϕUJ ψ, contradicting our assumption
for case (i).

Case (ii): the observer returns (true, n) in line 24. We have witnessed
that Tϕ does not hold (the check in line 10 does not hold) at time τe
and that min(J) = 0 (line 23). By the definition of en |= ϕUJ ψ (we
substitute min(J) = 0 and i = τe):

en |= ϕU[0,max(J)] ψ

⇔ ∃i(i ≥ n) : (i− n ∈ J ∧ ei |= ψ ∧ ∀j(n ≤ j < i) : ej |= false),

⇔ ∃i(i ≥ n) : (τe − n ∈ [0,max(J)] ∧ eτe |= ψ ∧ ∀j(n ≤ j < τe) :

ej |= false), (A4)

90

we observe that ϕU[0,max(J)] ψ can only hold (under the precondition that
Tϕ does not hold) in case we find a j that does not satisfy (n ≤ j < τe),
because the right hand side of the conjunction in Equation A4 vacuously
holds – regardless of the truth value of ϕ. This is exactly the case when
we choose τe = n. Then, τe − n = 0 and since 0 ∈ [0,max(J)] holds, the
left hand side of the conjunction in Equation A4 holds. We arrive at

eτn |= ϕU[0,max(J)] ψ ⇔ (τe = n) : (true ∧ eτe |= ψ ∧ true).

Thus, in case min(J) = 0 and eτe 6|=ϕ, the truth value of eτe = ϕUJ ψ is
equal to eτe |= ψ. This is ensured by line 23, contradicting our assumption
in case (ii).

Since we arrived at a contradiction for both cases, we have shown
that: the observer for ϕUJ ψ stated in Algorithm 12 returns (true, n) if
en |= ϕUJ ψ holds.

To complete the proof it remains to be shown that:

Only If: en |= ϕUJ ψ holds if the observer for ϕUJ ψ returns (true, n).
The proof is by induction on n ∈ N0.

Base Case (n = 0): we consider the four possible truth value combina-
tions of the input tuple (Tϕ,Tψ).

Case (i): assume both Tϕ and Tψ do not hold. We have that e0 6|=ϕ
and e0 6|=ψ. By substituting into the definition of en |= ϕUJ ψ we get

e0 |= ϕUJ ψ
⇔ ∃i(i ≥ 0) : (i− 0 ∈ [min(J),max(J)] ∧ ei |= ψ ∧ ∀j(0 ≤ j < i) :

ej |= ϕ).

By our assumption e0 6|=ϕ, ∀j(0 ≤ j < i) : ej |= ϕ evaluates to true iff
i = 0. We distinguish two cases (a) min(J) = 0 and (b) min(J) > 0.
Since Tϕ does not hold, we only consider lines 22-26 of Algorithm 12.

(a) e0 6|=ϕUJ ψ since 0 ∈ [0,max(J)] holds, however, e0 6|=ψ. We observe
that the algorithm returns (false, 0) for this case in line 24.

(b) e0 6|=ϕUJ ψ since 06∈[min(J),max(J)] with min(J) > 0. We observe
that the algorithm returns (false, 0) for this case in line 26.

By the arguments from above, the induction base follows in this case.

Case (ii): assume Tϕ does not hold and Tψ holds. We have that e0 6|=ϕ
and e0 |= ψ. For analogous arguments as in case (i), we distinguish the
two cases (a) min(J) = 0 and (b) min(J) > 0.

(a) e0 |= ϕUJ ψ since 0 ∈ [0,max(J)] holds and e0 6|=ψ. We observe
that the algorithm returns (true, 0) for this case in line 24.

91

(b) e0 6|=ϕUJ ψ since 06∈[min(J),max(J)] with min(J) > 0. We observe
that the algorithm returns (false, 0) for this case in line 26.

By the arguments from above, the induction base follows in this case.

Case (iii): assume Tϕ holds and Tψ does not hold. We have that

e0 |= ϕ and e0 6|=ψ. We distinguish two cases (a) min(J) = max(J) = 0
and (b) min(J) > 0. Since Tϕ holds, we will only consider lines 10-20 of
Algorithm 12.

(a) e0 6|=ϕUJ ψ since with i ∈ [0, 0] we have e0 6|=ψ. Initially, we have
mpre = 0 and m↑ϕ = 0. Therefore, the condition in line 18 holds
and the algorithm returns (false, 0) for this case in line 19.

(b) Since e0 |= ϕ and min(J) > 0, the validity of e0 |= ϕUJ ψ cannot
be determined at time n = 0 as we can choose an arbitrary i ∈
[min(J),max(J)] and need to test ei |= ψ and ∀j(0 ≤ j < i) : ej |=
ϕ at times i > n. The induction base follows by Lemma A6.

By the arguments from above, the induction base follows in this case.

Case (iv): assume both Tϕ and Tψ hold. We have that e0 |= ϕ

and e0 |= ψ. As in cases (i) and (ii), we distinguish the two cases (a)
min(J) = 0 and (b) min(J) > 0.

(a) e0 |= ϕUJ ψ since with i ∈ [0,max(J)] we choose i = 0 we have
e0 |= ψ. Since ϕ holds, we must have witnessed a transition
of ϕ (by definition, for times prior to 0, ϕ does not hold). The
check in line 2 holds and we have m↑ϕ = −1 and mpre = −∞. The
condition in line 12 holds (−1 + 0 < −0) and the algorithm returns
(true, 0) for this case in line 14.

(b) Since e0 |= ϕ and min(J) > 0, the validity of e0 |= ϕUJ ψ cannot
be determined at time n = 0. For analogous arguments as in case
(iii.b), the induction base follows by Lemma A6.

By the arguments from above, the induction base follows in this case.

Induction Step (n − 1 → n) with the induction hypothesis: assume
that en−1 |= ϕUJ ψ if the observer for ϕUJ ψ returns (true, n− 1) holds
for n − 1 ≥ 0. We will show that it holds for n, too. We consider the
same cases (i) to (iv) for the truth values of the input (Tϕ, Tψ) as in the
base case.

Case (i): assume both Tϕ and Tψ do not hold. For analogous argu-
ments as in the base case, the algorithm returns (false, n) in either line
24 or 26.

By the arguments from above, the induction step follows in this case.

Case (ii): assume Tϕ does not hold and Tψ holds. We distinguish two
cases for ϕ: a transition of ϕ did not (ii.a) or did occur at time n
(ii.b).

92

(ii.a) For the same arguments as in the base case, the algorithm returns
(true, n) in case min(J) = 0 (line 24) and (false, n) if min(J) > 0
(line 26). Thus, the induction step follows in this case.

(ii.b) We have that p = true, m↓ϕ = n, and Tϕ.v = true. Clearly,
the algorithm only executes lines 11-17 in this case. We need to
distinguish the following two cases (ii.b.1) The latest transition
of ϕ occurred at a time earlier than n − min(J) and (ii.b.1) the
latest transition of ϕ did occur at a time later than or equal to
n−min(J).

(ii.b.1) By assumption for this case we have m↑ϕ < n−min(J) and
by the semantics of the ϕUJ ψ operator we know that the
en |= ϕUJ ψ holds up to time n−min(J). We observe that in
this case, the check in line 12 holds and the algorithm returns
(true, n −min(J)) in line 14. The induction step follows in
this case.

(ii.b.2) By assumption for this case and the semantics of the ϕUJ ψ
operator we know that the en 6|=ϕUJ ψ holds up to time n.
Intuitively, the number of time stamps we saw ϕ to be true
was shorter than min(J). We observe that in this case, the
check in line 12 does not hold. Since p is true the check on
line 15 holds and the algorithm returns (false, n) in line 16.
The induction step follows in this case.

By the arguments from above, the induction step follows in all three
cases.

Case (iii): assume Tϕ holds and Tψ does not hold. We distinguish
two cases for ϕ: a transition of ϕ did not (iii.a) or did occur at time
n (iii.b).

(iii.a) We distinguish two cases: min(J) = max(J) = 0 (iii.a.1) and
(min(J) > 0) ∧ (max(J) > 0) (iii.a.2).

(iii.a.1) By the assumption dur(J) = 0 and mpre ≤ n trivially holds,
the algorithm returns (false, n) in line 19. Thus, the induction
step follows in this case.

(iii.a.2) Suppose that the predicate in line 18 holds. In this case we
observe that there is no previous i : (τe − dur(J) ≤ i ≤ τe) for
that the algorithm returned (true, i−min(J)) in line 14. If
this would be the case we would have set mpre to i in line 13
and the predicate in line 18 would not hold anymore. By the
definition of en |= ϕUJ ψ we have

en |= ϕUJ ψ ⇔ ∃i(i ≥ n) :

(i− n ∈ J ∧ ei |= ψ ∧ ∀j(n ≤ j < i) : ej |= false)

93

and with the observation from above, en |= ϕUJ ψ can only
hold for an i > τe. This implies that en |= ϕUJ ψ does not
hold for an n up to τe −max(J). Since the algorithm returns
(false, n − max(J)) in line 19, the induction step follows in
this case. In case we have witnessed a transition of ϕ
in the meantime we have m↑ϕ ≥ n −max(J). Then, by the
semantics of the ϕUJ ψ operator, en |= ϕUJ ψ cannot hold
until a time stamp n that is equal to the time stamp of the

transition of ϕ, stored in m↑ϕ. In this case, the algorithm
returns (false,m↑ϕ) in line 19 and the induction step follows.

(iii.b) We have that m↑ϕ = n − 1, and mpre = −∞. Then, (mpre +
dur(J) ≤ n) holds. We distinguish two cases: min(J) = max(J) =
0 (iii.b.1) and (min(J) > 0) ∧ (max(J) > 0) (iii.b.2).

(iii.b.1) By our assumption min(J) = max(J) = 0 we arrive at

en |= ϕU[0,0] ψ ⇔ ∃i(i ≥ n) :

(i− n ∈ [0, 0] ∧ ei |= ψ ∧ ∀j(n ≤ j < i) : ej |= ϕ).

For n = i, i− n ∈ [0, 0] holds, however, by our assumption for
this case (Tϕ holds and Tψ does not hold), we immediately have

that ei 6|=ψ and thus en 6|=ϕU[0,0] ψ. Note that the algorithm
returns (false,max(n − 1, n)) in line 19, which simplifies to
(false, n). The induction step follows in this case.

(iii.b.2) By assumption min(J) > 0 and since max(J) ≥ min(J), the
algorithm returns (false, n− 1) in line 19. The induction step
follows in this case.

By the arguments from above, the induction step follows in both
cases.

Case (iv): assume both Tϕ and Tψ hold. We distinguish two cases for
ϕ: a of ϕ did not (iv.a) or did occur at time n (iv.b).

(iv.a) We distinguish two cases min(J) = 0 (iv.a.1) and min(J) > 0
(iv.a.2).

(iv.a.1) (m↑ϕ+min(J) < n) holds and the algorithm returns (true, n).
The induction step follows in this case.

(iv.a.2) (m↑ϕ + min(J) < n) only holds if the latest transition
occurred at least min(J) time units in the past. If this is the
case, the algorithm returns (true, n − min(J)). By similar
arguments as in the base case, the induction step follows in
this case. Suppose that the latest transition of ϕ occurred
at a time later than n − min(J). Then, the induction step
follows by Lemma A6.

94

(iv.b) We have that m↑ϕ = n − 1 and mpre = −∞. We distinguish two
cases min(J) = 0 (iv.b.1) and min(J) > 0 (iv.b.2).

(iv.b.1) (m↑ϕ+min(J) < n) holds and the algorithm returns (true, n).
The induction step follows in this case.

(iv.b.2) (m↑ϕ + min(J) < n) does not hold. The induction step follows
by Lemma A6.

By the arguments from above, the induction step follows in both
cases.

The theorem follows.

95

Appendix B

Proofs of Complexity Results

Theorem B1 (Space Complexity of Asynchronous Observers)
The respective asynchronous observer for a given MTL specification ϕ has
a space complexity, in terms of memory bits, bounded by (2 + dlog2(n)e) ·
(2 ·m · p), where m is the number of binary observers (i.e., ϕ ∧ ψ or
ϕUJ ψ) in ϕ, p is the worst-case delay of a single predecessor chain in
AST(ϕ), and n ∈ N0 is the time stamp it is executed.

Proof. We first make the following observations:

a) The asynchronous observer algorithms for unary MTL operators,
i.e., τ ϕ (Algorithm 8), τ ϕ (Algorithm 9), and ¬ϕ (Algorithm 7),
are memory-less, i.e., do not use synchronization queues.

b) The asynchronous observer algorithms for binary MTL operators,
i.e., ϕ ∧ ψ (Algorithm 10) and ϕUJ ψ (Algorithm 12) use two
synchronization queues, qϕ and qψ. The sizes |qϕ| and |qψ| are
assigned in step MA3 of the synthesis procedure and depend on the
time bounds assigned to the observers to compute their subformulas
ϕ and ψ.

For example, the size of the synchronization queues of the observers
required to evaluate the specification 100 ϕ1 ∧ 10 ψ1 depends on the
time bounds 100 and 10 assigned to the subformulas ϕ1 and ψ1. The
algorithm for assigning queue sizes assigns |qψ1 | = 100 and |qϕ1 | = 10.
Now suppose that subformula ϕ1 is computed by another observer (e.g.,
ϕ1 := ¬ 50 ϕ11), then |qψ1 | = 100 + 50 = 150.

In the general case, for an arbitrary MTL specification ϕ, the maxi-
mum queue size assigned by the algorithm for assigning queue sizes equals
to the weight of the longest path in AST(ϕ); the weight on the edges is
the value computed by wcd(�), where � is the observer for the respective
subformula of ϕ. We write p to denote the weight of this longest path.
For example, the longest path in AST(ϕ) of (100 (¬ 50 ϕ11))∧ (140 ψ1)
is 150. Consequently, all other queue sizes are equal or less than p. With
the number of observers for binary operators in ϕ being equal to m,
the total number of queues created for ϕ is, by observation b), equal to
2 ·m. Then, the total size of all queues is bounded by 2 ·m · p. Recall
that, a single element T = (v, τe) in a synchronization queue accounts for
w = dlog2(n)e+ 2 bits. We need dlog2(n)e bits to store the time stamp
T.τe and two additional bits to encode the three valued verdict T.v.

For a given MTL specification ϕ, we thus arrive at a worst-case space
complexity, in terms of memory bits, of (2 + dlog2(n)e) · (2 ·m · p) for an
asynchronous observer for ϕ.

96

The theorem follows.

Theorem B2 (Time Complexity of Asynchronous Observers)
The respective asynchronous observer for a given MTL specification ϕ

has an asymptotic time complexity of O
(

log2 log2 max(p, n) · d
)

, where p

is the maximum worst-case-delay of any observer in AST(ϕ), d the depth
of AST(ϕ), and n ∈ N0 the time stamp it is executed.

Proof. As shown in [1] one can construct circuits that perform addi-
tion of two integers of bit complexity w ∈ N within time O(log2(w)).
Subtraction and relational operators as required by the asynchronous
observer algorithms can be built around adders. We observe that, when
Add(〈a〉, 〈b〉, c) is a ripple carry adder for arbitrary length unsigned vec-
tors 〈a〉 and 〈b〉 and c the carry in, then a subtraction of 〈a〉 − 〈b〉 is
equivalent to Add(〈a〉, 〈b〉, 1), where b denotes the bitwise negation of
vector b. Relational operators can be built around adders in a similar
way, for example, as described in [2, Chap. 6].

Since evaluating any of the conditionals and predicates (for example,
the check in line 8 in Algorithm 8) occuring in the asynchronous observer
algorithms at time n ∈ N0 requires addition of integers of bit complexity
at most max(log2(p), log2(n)), we arrive at an asymptotic time complexity
of O(log2 log2 max(p, n)) for any of the proposed asynchronous observers,
executed at time n.

For a given MTL specification ϕ, we can determine its depth d by
the number of nodes of the longest-path in the parse tree of ϕ. We then
arrive at an asymptotic time complexity of O(d · log2 log2 max(p, n)) for
an asynchronous observer for ϕ.

The theorem follows.

Theorem B3 (Circuit-Size Complexity of Synchronous Observers)

For a given MTL formula ϕ, the circuit to monitor êval (ϕ) has a circuit-
size complexity bounded by 11 ·m, where m is the number of observers in
AST(ϕ).

Proof. We want to show that the circuit required to implement a syn-
chronous observer to monitor an arbitrary MTL specification ϕ has a
circuit-size complexity [3] bounded by 11 ·m, where m is the number
of observers in AST(ϕ). This statement holds, if we can show that any

of the synchronous observers for êval (¬ϕ), êval (ϕ ∧ ψ), êval (τ ϕ),

êval (�J ϕ), and êval (ϕUJ ψ) can be built with at most 11 two-input
gates. The circuits in Figure B1 show that any of the synchronous
observers can be built with at most 11 two-input gates.

The theorem follows.

97

êval (¬ϕ)

y1 = i1
y2 = ¬(i1 ⊕ i2)

two-input gates: 1

i2

i1

y2

y1

⊕

êval (ϕ ∧ ψ)

y1 = (i11 ∧ i12) ∨ (i11 ∧ ¬i22) ∨
(¬i12 ∧ i21) ∨ (i21 ∧ i22)
y2 = i12 ∨ i22

two-input gates: 8

i11

i12

i21

i22

y1

y2

êval (τ ϕ)

y1 = (¬k ∧ ¬i2) ∨ i1
y2 = i2
k = 1 if τ = 0 and k = 0
othw.

two-input gates: 2

i1

k

i2

y1

y2

êval (�J ϕ)

y1 = (¬i1 ∨ i1)
y2 = (i1 ∧ i2)

two-input gates: 2

i1

i2

y1

y2

êval (ϕUJ ψ)

y1 = i11∨(¬i12∧i21)∨(¬i12∧
i22)∨ (¬i12 ∧¬k)∨ (i21 ∧ i22)
y2 = i11 ∨ (¬i12 ∧ i21 ∧ i22)
k = 1 if min(J) = 0 and k =
0 othw.

two-input gates: 11
i11

i12

i21

i22

k

y1

y2

Figure B1: Mapping of synchronous MTL observers to circuits of two-
input gates.

98

Theorem B4 (Circuit-Depth Complexity of Synchronous Observers)

For a given MTL formula ϕ, the circuit to monitor êval (ϕ) has a circuit-
depth complexity of 4 · d.

Proof. We want to show that the circuit for a synchronous observer to
monitor an arbitrary MTL formula ϕ has a circuit-depth complexity [3]
bounded by 4 · d, where d is the depth of AST(ϕ). This statement holds,
if we can show that any of the synchronous observers can be built with a
circuit of depth at most 4. From Figure B1 we can observe the depth of
these circuits:

1. êval (¬ϕ) circuit depth: 1

2. êval (ϕ ∧ ψ) circuit depth: 3

3. êval (τ ϕ) circuit depth: 2

4. êval (�J ϕ) circuit depth: 1

5. êval (ϕUJ ψ) circuit depth: 4

The theorem follows.

99

Appendix C

Simulation Results

In what follows, we will discuss simulation runs we recorded from a
full-fledged VHDL Register Transfer Level (RTL) hardware simulation
of the deployment of the rt-R2U2 to the Swift UAS. In this simulation,
the rt-R2U2 runs with a clock frequency of 100 MHz and new sensor
data is provided from the UAS with a frequency of 10 Hz. The hardware
design processes 37,418 individual sensors readings (i.e, there are 37,418
individual laser altimeter readings, 37,418 individual barometric altimeter
readings, . . .). Table. C1 summarizes the relevant signals required to
understand the simulation traces.

Discussion of the simulation trace in Fig. C1. At the cursor position
(red, right), the time of the RTC (signal s rtc timestamp) equals to
n = 2619 and the UAS on-board sensors indicate: an increase in the
baro-metric altitude signal (see input signal baro altitude in category
Swift UAS sensor data), an increase in the laser altitude signal (see signal
laser altitude), a positive vertical velocity (see signal vertical velocity),
and a significant pitching of the UAS (see signal euler pitch angle). The
atomic propositions as calculated by runtime observers of the rt-R2U2
capture this behavior: signal sigma s b (baro alt up) evaluates to true,
i.e., the respective hardware observer of the rt-R2U2 determined that
e2619 |= σSB↑ holds. Similarly, the other atomic propositions (as shown in
Fig. C1) of the specification are evaluated to: e2619 6|=σSB↓ , e2619 |= σSL↑ ,
and e2619 6|=σSL↓ . Additionally (not explicitly mentioned in Fig. C1)
the example uses the atomic propositions: σSP↑ = (pitch ≥ 5◦) and
σSP↓ = (pitch ≤ 2◦) to monitor a significant up/down pitching of the UAS
(from the IMU sensors). σSV ↑ = (vel up ≥ 2ms) and σSV ↓ = (vel up <
−2ms) to monitor a significant up/down velocity of the UAS (from the
IMU sensors). σSct = (cmd == takeoff) and σScl = (cmd == land) to
monitor if takeoff/land commands were received from the ground station.
σSh = (AltL ≥ 600ft) to monitor if the laser altimeter of the UAS
indicates an altitude greater then 600 ft (the intended flight height). The
verdicts computed by the respective hardware observers of the rt-R2U2
for these atomic propositions are e2619 |= σSP↑ , e

2619 6|=σSP↓ , e2619 6|=σSct ,
e2619 6|=σScl , and e2619 |= σSh .

Discussion of the simulation trace in Fig. C2. Initially, all inputs to the al-
timeter health model indicate an increasing altitude (i.e., en |= σSB↑ , e

n |=
σSL↑ , and en |= ϕSS↑). The posterior marginals Pr(baro alt=OK | π |=
{σSB↑ , σSL↑ , ϕSS↑}), and Pr(baro alt=BAD | π |= {σSB↑ , σSL↑ , ϕSS↑}),
and Pr(laser alt=OK | π |= {σSB↑ , σSL↑ , ϕSS↑}), and Pr(laser alt=BAD |
π |= {σSB↑ , σSL↑ , ϕSS↑}), as calculate by higher level reasoning module
of the rt-R2U2, show a high likelihood (belief) of both a healthy laser

100

altimeter reading and a healthy barometer altimeter reading. Then,
at the cursor position (red), due to the outage of the laser altimeter,
en 6|=σSL↓ holds and indicates a decrease in altitude, while the other in-
puts to the altimeter health model disagree and indicate an increase (i.e.,
en |= σSB↑ , e

n |= ϕSS↑ still hold). This is revealed by the new health
assessment computed by the rt-R2U2: we see a significant drop in the
health assessment of the laser altimeter reading (signal Pr(laser alt=OK
| π |= {σSB↑ , σSL↑ , ϕSS↑})), while the belief in a healthy altimeter reading
remains high (signal Pr(baro alt=OK | π |= {σSB↑ , σSL↑ , ϕSS↑})).

Table C1: Interpretation of the simulation signals in Fig. C1 and Fig. C2:
RTC = Real Time Clock

Signal Name Interpretation

rt-R2U2 System Signals

s clk system clock of the rt-R2U2
s reset n asynchronous reset of the rt-R2U2 (issued when low)

RTC related Signals

s rtc clock clock signal generated by the RTC
s rtc timestamp counter value of the RTC (i.e., time stamp n)

Inputs: Sensor RAW data as transferred over the communication bus of the Swift UAS

baro altitude altitude in ft as measured by the onboard baro-metric altimeter
laser altitude altitude in ft as measured by the onboard laser altimeter

vertical velocity vertical velocity in m
s as measured by the onboard IMU

euler pitch angle euler pitch angle in degree as measured by the onboard IMU
takeoff command set if Swift UAS received takeoff command from ground station
land command set if Swift UAS received land command from ground station

Outputs: Atomic Propositions of the specification, calculated by the rt-R2U2

sigma S b baro-metric altitude: truth values of en |= σSB↑ and en |= σSB↓
sigma S l laser altitude: truth values of en |= σSl↑ and en |= σSL↓
sigma S v vertical velocity: truth values of en |= σSV ↑ and en |= σSV ↓
sigma S p pitch angle: truth values of en |= σSP↑ and en |= σSP↓
sigma S ct command start: truth values of en |= (cmd == start)
sigma S cl command land: truth values of en |= (cmd == land)
sigma S h laser altitude: truth values of en |= Altl ≥ 600

Outputs: Relevant signals of the runtime observer part of the rt-R2U2

phi 1 (sync) output of synchronous observer for flight rule ϕ1

↪→ maybe set if output of the observer êval (ϕ1) is maybe, cleared otherwise.

↪→ value set if output of the observer êval (ϕ1) is true, cleared if êval (ϕ1) is false
phi 1 (async) output of asynchronous observer for flight rule ϕ1

↪→ value set if verdict of the output tuple Tϕ1 .v = true, cleared otherwise.
↪→ time time stamp of the output tuple (Tϕ1 .τe)

phi 2 (sync) output of synchronous observer for flight rule ϕ2

↪→ maybe set if output of the observer êval (ϕ2) is maybe, cleared otherwise.

↪→ value set if output of the observer êval (ϕ2) is true, cleared if êval (ϕ2) is false
phi 2 (async) output of asynchronous observer for flight rule ϕ2

↪→ value verdict of the output tuple (Tϕ2 .v)
↪→ time time stamp of the output tuple (Tϕ2 .τe)

phi S s up (async) output of asynchronous observer for ϕSs↑
↪→ value set if verdict of the output tuple TϕSs↑ .v = true, cleared otherwise.

↪→ time time stamp of the output tuple (TϕSs↑ .τe)

phi S s down (async) output of asynchronous observer for ϕSs↓
↪→ value set if verdict of the output tuple TϕSs↓ .v = true, cleared otherwise.

↪→ time time stamp of the output tuple (TϕSs↓ .τe)

Outputs: Relevant signals of the higher level reasoning part of the rt-R2U2 (only in Fig. C2)

Pr(baro alt=OK | pi |= ϕ) posterior marginal (likelihood of a good barometric altimeter reading)
Pr(baro alt=BAD | pi |= ϕ) posterior marginal (likelihood of a bad barometric altimeter reading)
Pr(laser alt=OK | pi |= ϕ) posterior marginal (likelihood of a good laser altimeter reading)

Pr(laser alt=BAD | pi |= ϕ) posterior marginal (likelihood of a bad laser altimeter reading)

101

...

...0

...0

...

...

0 ns 1000000 ns 2000000 ns 3000000 ns

s_clk

s_reset_n

s_rtc_clock

s_rtc_timestamp ...

Swift UAS sensor data

baro_altitude

laser_altitude

vertical_velocity

euler_pitch_angle

takeoff command

land command

sigma (atomic propositions)

sigma_S_b (baro alt up)

sigma_S_b (baro alt down)

sigma_S_l (laser alt up)

sigma_S_l (laser alt down)

sigma_S_v (vertical vel up)

sigma_S_v (vertical vel down)

sigma_S_p (pitch up)

sigma_S_p (pitch down)

sigma_S_ct (takeoff command)

sigma_S_cl (land command)

sigma_S_h (flight height laser)

phi_1 (synchronous)

maybe

value

phi_1 (asynchronous)

value

time ...0

phi_2 (synchronous)

maybe

value

phi_2 (asynchronous)

value

time ...0

sigma_S_s up (asynchronous)

value

time ...

sigma_S_s down (asynchronous)

value

time ...

27505 ns

628435 ns

2723071 ns

600930 ns

2094636 ns

Entity:tb Architecture:sim Date: Don Jˆ⁄n 10 16:33:16 CET 2013 Row: 1 Page: 1

Figure C1: Hardware simulation traces for a complete test-flight data of
the Swift UAS.

102

...

...

...

...

...

0 ns 4000000 ns 8000000 ns 12000000 ns

s_clk

s_reset_n

s_rtc_clock

s_rtc_timestamp ...

Swift UAS sensor data

baro_altitude

laser_altitude

vertical_velocity

euler_pitch_angle

takeoff command

land command

sigma (atomic propositions)

sigma_S_b (baro alt up)

sigma_S_b (baro alt down)

sigma_S_l (laser alt up)

sigma_S_l (laser alt down)

sigma_S_v (vertical vel up)

sigma_S_v (vertical vel down)

sigma_S_p (pitch up)

sigma_S_p (pitch down)

sigma_S_ct (takeoff command)

sigma_S_cl (land command)

sigma_S_h (flight height laser)

phi_1 (synchronous)

maybe

value

phi_1 (asynchronous)

value

time ...

phi_2 (synchronous)

maybe

value

phi_2 (asynchronous)

value

time ...

phi_S_s up (asynchronous)

value

time ...

phi_S_s down (asynchronous)

value

time ...

higher level reasoning

P(baro_ok | pi|=spec)

P(baro_bad | pi|=spec)

P(laser_ok | pi|=spec)

P(laser_bad | pi|=spec)

4519659 ns

Entity: Architecture: Date: Son Jˆ⁄n 13 15:54:28 CET 2013 Row: 1 Page: 1

Figure C2: A section (laser altimeter outage) of the simulation traces
with health assessment.

103

Appendix D

Detailed Risk Analysis

D.1 Risks and Mitigation—Mechanical

D.1.1 Center of Gravity

Description: Due to the additional payload, the Center of Gravity of
the DragonEye will change.

Severity/Likelihood:d/A

Mitigation/Protection: Since there are already small weights in the
cone we remove some of the weights to minimize the effect.

D.1.2 Nosecone Separation on hard landing

Description: In case of a hard landing, the Nosecone could be separated
from the rest of the DragonEye. This could cause a hardware damage of
the Parallella board or the APM, or the Power regulator since they are
connected via wires. It could then be possible that the Power cables are
shorted.

Severity/Likelihood:d/A

Mitigation/Protection:

� Nose is fixed securely.

D.1.3 Vibration

Description: The Vibrations could cause loose connectors. Also, the
uSD card of the Parallella could become loose.

Severity/Likelihood: a/A

Mitigation/Protection: The SD-Card and connectors, Jumpers will
be secured with RTV silicone.

D.2 Risks and Mitigation—Power

D.2.1 System Power Loss

Description: Short in Parallella, or intense computations might quickly
drain flight battery

Severity/Likelihood: b/A

Mitigation/Protection: The current drawn by the Parallella board is
limited by a 4A Fuse.
The DragonEye uses a battery monitor, a failsafe mechanism forces the
DragonEye to RTL if the battery voltage is low

104

� RTV the jumper and board connectors, prevent connectors from
failing in flight

� Fuse in power line to Parallella board

� Noticeable low-down of engines before power failure; switch to
RC-mode

D.2.2 Excessive Power Consumption

Description: The Parallella board could either because of intense calcu-
lations or for unknown reasons drain a lot of power from the battery.
Severity/Likelihood: b/A
Mitigation: The current drawn by the Parallella board is limited by a
4A Fuse
The DragonEye uses a battery monitor, a failsafe mechanism forces the
DragonEye to RTL if the battery voltage is low

� Measure in lab under full-load before the flight

D.2.3 Burn of Power cable/connector

Description: Burn of Power cable/connector due to short circuit
Severity/Likelihood: a/A
Mitigation/Protection: Fuses

D.2.4 Poor Power Quality for Parallella Board

Description: If the Power is noisy, a malfunction of the Parallella board
is possible
Severity/Likelihood: a/B
Mitigation/Protection:

� Measure in lab before the flight

� Optional: Separate Power Regulator

D.3 Risks and Mitigation—Thermal

D.3.1 Parallella Board Too Hot

Description: Parallella board is getting too hot (above 70◦C)
Severity/Likelihood: a/C
Mitigation:

� Software on Parallella (XTemp) performs automatic shutdown of
Parallella. No damage, but loss of evaluation/monitoring data from
after the shutdown.

� Existing holes in nose-cone to higher airflow.

105

� Larger heat sink helps reduce temperature

� No aircraft changes

D.4 Risks and Mitigation—EMI and Signal Interference

D.4.1 Signal Interference: UART

Description: Additional UART connection can interfere with the APM
Hardware/Software

Severity/Likelihood: a/B

Mitigation/Protection:

� APM-RX UART is disconnected

� Tests in the lab

D.4.2 RF Interference

Description: The Parallella board can introduce EMI Interference into
the APM or vice versa leading to unexpected behavior.

Severity/Likelihood: b/B

Mitigation/Protection:

� Lab Testing

� Range testing as part of pre-flight

� 2 command links or separate frequencies (900MHz + 2.4MHz) -
results in loss of one frequency, requiring GCS to take control on
another frequency

D.5 Risks and Mitigation—FSW Interference

D.5.1 SW Interference UART Connection

Description: The additional connected UART could Interfere with the
Software.

Severity/Likelihood: a/B

Mitigation/Protection:

� Review of SW Changes

� APM-RX UART is disconnected

� Low-Level SW failsafe mechanism automatically hands over control
to the Operator

� Hardware MUX can be used to take over control of the DragonEye

106

D.5.2 FSW crash to due unspecified bug

Description: FSW crash due unspecified bug.

Severity/Likelihood: a/B-C

Mitigation/Protection:

� Review of SW Changes

� Low-Level SW failsafe mechanism automatically hands over control
to the Operator

� Hardware MUX can be used to take over control of the DragonEye

D.5.3 Bad Task Timing due to modified Scheduler/Tasks

Description: Since the scheduler/tasks are instrumented, delays are
introduced. If the delay is too big, the execution of the tasks can be
delayed or some tasks might even starve since there is not enough time
to run them.

Severity/Likelihood: a/B

Mitigation/Protection:

� Instrumentation of scheduler is limited to single copy by reference
operations to minimize delay

� Review of modified Scheduler

� Since the monitoring gathers statistical data, this should be detected
during HITL-Test

� Low-Level SW failsafe mechanism automatically hands over control
to the Operator

� Hardware MUX can be used to take over control of the DragonEye

D.5.4 Time overrun in Monitoring Task

Description: Since the Scheduler is not preemptive, the additional mon-
itoring task could overrun and delay other tasks or even cause starvation.

Severity/Likelihood: a/B

Mitigation/Protection:

� Packets are only sent non-blocking

� Packets are only sent when output ring buffer has enough free space

� Low-Level SW failsafe mechanism automatically hands over control
to the Operator

� Hardware MUX can be used to take over control of the DragonEye

107

D.5.5 Time overrun in FSW Task

Description: Since some tasks are instrumented, delays are introduced.
If the delay is too big, some other tasks might starve depending on the
amount of introduced delay. Since the Scheduler is not preemptive, a
long running task could trigger the Low-Level SW failsafe or all other
task could be delayed.

Severity/Likelihood: a/B

Mitigation/Protection:

� Instrumentation of tasks was limited to single copy by reference
operations to minimize delay

� Review of modified tasks

� Low-Level SW failsafe mechanism automatically hands over control
to the Operator

� Hardware MUX can be used to take over control of the DragonEye

D.5.6 Inconsistent variable values in buffers

Description: due to different update rates in tasks, values of variables
in the monitoring buffer might be inconsistent.

Severity/Likelihood: a/C

Mitigation/Protection: Since the monitoring rate is lower than rates
of most tasks, averaging of values is performed by the monitoring software
on the Parallella board. This step eliminated transient effects.

D.5.7 Interference with Failsafe modes

Description: For some reason the Low-Level SW failsafe mechanism
could not operate correctly.

Severity/Likelihood: a/B

Mitigation/Protection:

� Hardware MUX can be used to take over control of the DragonEye

D.5.8 Mode-confusion for GCS or pilot

Description: Unexpected/erroneous behavior of the FSW could get the
DragonEye into a mode, which is unexpected to the RC pilot. E.g., the
AC flies a straight line as it should be commanded by the autopilot, but
unknown to the operator, the autopilot has disengaged.

Severity/Likelihood: b/C

Mitigation/Protection: Operation at sufficient altitude to provide RC
pilot ample time to react.

108

D.6 Risks and Mitigation—Operational

D.6.1 Failure in FSW

D.6.2 Risks in static failure-injected Operation

Description: Static injected failure can cause an unstable state of the
AC when switched from RC-mode to autopilot. Could even be unable to
launch. Mitigation:

� careful HIL evaluation of static failure scenarios

� safe transition points at an altitude, which gives RC pilot enough
time to react

� prior reduction of failure magnitudes to ensure AC stability

D.6.3 Dynamic failure-injection: Transition on RC recovery

Description: Taking over control from autopilot to RC mode could
cause undesired transient effects.

D.6.4 Dynamic failure-injection: Unrecoverable AC state

Description: Upon activation of an injected fault, the AC goes into an
unrecoverable state.

� switch-over to RC control

� fault injection only at safe altitude

109

Appendix E

Software Annotations for ArduPlane

E.1 Modified Files

The following source files of the Arduino autopilot software have been
added or modified.

AP-Rtr2u2 here are the framework and configuration header file and
C++ file to implement the monitoring task and buffer transmission.

Arduplane.pde This file has been modified in the places: (1) include
the appropriate header file, (2) register objects for access during
initialization, and (3) add the monitoring task to the scheduler.

setup.pde This file has been modified in the places: (1) include the
appropriate header file, (2) emit signal that EEPROM is going to
be erased.

config.h This file has been modified in one place: define SERIAL3 BAUD

as 115200, a constant to store the baud rate of rt-r2u2.

system.pde This file has been modified in one place: reset the UART
C baud rate to SERIAL3 BAUD after parameter load.

FollowMe.pde This file has been modified in 4 places: (1) declare the
channel, (2) set GCS Mavlink library’s comm 1 port to UART 2.

GCS MAVLink.h This file has been modified in 6 places: (1) increase
the number of MAVLink buffers, (2) declare MAVLink stream for
ground control communication, (3) check the number of bytes that
can be written to the stream, (4) write a byte to the stream, (5)
check the number of bytes that can be read from the stream, (6)
read a byte from the stream.

GCS Mavlink.pde This file has been modified in 4 places: (1) init, set
the port for the MAVLink channel, (2) forward unknown messages
to the other link if there is one, (3) send a low priority formatted
message to the GCS, (4) send airspeed calibration data.

AP Scheduler.cpp This file has been modified in 5 places: (1) emit
the signal that one tick has passed, (2) emit different signals when
running one tick.

UARTDriver.h This file has been modified in one place: declare two
variables to store the number of time that interrupt service routine
is called in both transmitter and receiver. AVRUARTDriverHandler
is modified to updated these two variables.

110

Scheduler.cpp This file has been modified in one place: send error
message to rt-r2u2.

Semaphores.cpp This file has been modified in 5 places: (1) emit the
error signal that semaphore has not been taken, (2) emit the error
signal that failing to get semaphore, (3) emit the error signal that
a blocking semaphore timeout was reached.

Storage.cpp This file has been modified in one place: emit the signal
of writing to the parameter section of the EEPROM since last
transmission.

AP InertialSensor MPU6000.cpp This file has been modified in 2
places: register the static address of the two variables:
last sample time micros and spi sem.

AntennaTracker/GCS Mavlink.pde This file has been modified in
2 places: (1) init, set the port for the MAVLink channel, (2) send a
low priority formatted message to the GCS.

Makefiles the AP-Rtr2u2 files have been added to the makefile.

Name cat type description

RTR2U2 LOW LEVEL OS

s boot detected G uint8 new communication
s clear boot detected uint8 clear the reboot flag after trans-

mitted
s tick counter uint8 last value of scheduler tick

counter
s free memory uint8 free memory size
s num of uart isr tx uint8 number of calls to transmitter’s

ISR
s num of uart isr rx uint8 number of calls to receiver’s ISR
s num of scheduler tick overflowuint8 number of scheduler tick overflow
s task i num runnable uint8 number of times task i can run
s task i num run uint8 number of times task i has run
s all tasks zero counters uint8 clear all counters after a trans-

mission
s task i num overrun uint8 number of times task i has over-

run
s task i slipped uint8 number of times task i has been

slipped
s task i delay uint8 maximum delay
s failsafe cnt uint8 number of times falling into sw-

failsafe state
s wipe eeprom cnt uint8 number of times EEPROM has

been erased

111

s reset eeprom cnts uint8 number of times resetting EEP-
ROM monitor counter

s write eeprom param sect cnts uint8 number of times writing to the
param section

RTR2U2 LOW LEVEL SENS COMM

s compass last update uint8 last update compass
s baro last update uint8 last update barometer
s gps lock status uint8 GPS Lock Status
s gps last fix time uint8 last gps fix(time stamp)in ms
s ins last sample time uint8 Last Sample time of the Inertial

Sensor in us
s spi blocked sem cnt uint8 Counter how often failed to get

SPI Semaphore
s spi timeout sem cnt uint8 Counter how often a Blocking

Semaphore Time out was reached
s spi wrong give sem cnt uint8 Counter how often a Semaphore

was tried to give without having
it

RTR2U2 COMMAND COMM

s last heartbeat G int16 the time when the last HEART-
BEAT message arrived from a
GCS in ms

RTR2U2 BEHAVIORAL

s current loc alt uint8 Current Location Altitude
s current loc lat uint8 Current Location Latitude
s current loc lng uint8 Current Location Longitude
s gps alt uint8 GPS Altitude
s gps num sats uint8 Number of visible satellites
s gps ground speed cm uint8 GPS Ground speed in cm/s
s airspeed m uint8 airspeed in m/s
s baro alt uint8 Barometric Altitude
s baro climb rate uint8 Barometer climb rate in m/s

(positive=going up)
s home alt uint8 Altitude of the home location
s home lat uint8 Latitude of the home location
s home lng uint8 Longitude of the home location
s next wp alt uint8 Altitude of the next Waypoint
s next wp lat uint8 Latitude of the next Waypoint
s next wp lng uint8 Longitude of the next Waypoint
s control mode uint8 Mode of the Plane

RTR2U2 BATTERY

s battery voltage uint8 battery voltage
s battery low voltage uint8 battery low voltage

Table E2: Current variables monitored

112

RTR2U2 EN enable monitoring

RTR2U2 LOW LEVEL OS add subset
RTR2U2 LOW LEVEL SENS COMM add subset
RTR2U2 LOW LEVEL ACTUATOR COMM add subset
RTR2U2 COMMAND COMM add subset
RTR2U2 INTERNAL CALCULATIONS add subset
RTR2U2 BEHAVIORAL add subset
RTR2U2 BATTERY add subset

Table E3: #defines to control rt-R2U2 monitoring

113

Appendix F

List of Publications and Presentations

F.1 Publications

� Thomas Reinbacher, Kristin Y. Rozier, and Johann Schumann.
“Temporal-Logic Based Runtime Observer Pairs for System Health
Management of Real-Time Systems.” In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), volume
8413 of Lecture Notes in Computer Science (LNCS), pages 357–372,
Springer-Verlag, April, 2014.

� Johannes Geist, Kristin Yvonne Rozier, and Johann Schumann.
“Runtime Observer Pairs and Bayesian Network Reasoners On-
board FPGAs: Flight-Certifiable System Health Management for
Embedded Systems.” In Runtime Verification (RV14), Springer-
Verlag, September 22-25, 2014.

� Johann Schumann, Kristin Y. Rozier, Thomas Reinbacher, Ole J.
Mengshoel, Timmy Mbaya, and Corey Ippolito. “Towards Real-
time, On-board, Hardware-supported Sensor and Software Health
Management for Unmanned Aerial Systems.” In International
Journal of Prognostics and Health Management (IJPHM). (Invited
journal paper; To appear)

F.2 Presentations

� K.Y. Rozier: “No More Helicopter Parenting: Intelligent Au-
tonomous Unmanned Aerial Systems.” NASA Ames’ premier sem-
inar series, the Directors Colloquium, special edition in honor of
NASA Ames’ 75th Anniversary celebration, by invitation of the
Office of the Chief Scientist. NASA Ames Research Center, Moffett
Field, California, June 10, 2014.

� J. Schumann: “Towards on-board, hardware-supported Sensor and
Software Health Management for UAS.” FORTISS, Technische
Universität München, Germany, June 2014.

114

References used in the
Appendix

1. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient
solution of a general class of recurrence equations. IEEE Trans.
Comput. 22(8), 786–793 (1973)

2. Kroening, D., Strichman, O.: Decision Procedures: An Algorithmic
Point of View. Springer Verlag (2008), ISBN: 3540741046

3. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner
Series in Computer Science, John Wiley & Sons (1987), ISBN:
3519021072

115

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)
01-05-2015

2. REPORT TYPE

Technical Memorandum
3. DATES COVERED (From - To)

11/2013–12/2014
4. TITLE AND SUBTITLE

Intelligent Hardware-Enabled Sensor and Software Safety and Health
Management for Autonomous UAS

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

Kristin Y. Rozier, Johann Schumann, and Corey Ippolito

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Ames Research Center
Moffett Field, California 94035-1000

8. PERFORMING ORGANIZATION
REPORT NUMBER

L–

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)
NASA

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

NASA/TM–2015–218817

12. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited
Subject Category 38
Availability: NASA STI Program (757) 864-9658

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://ntrs.nasa.gov.

14. ABSTRACT

Unmanned Aerial Systems (UAS) can only be deployed if they can effectively complete their mission and respond to failures
and uncertain environmental conditions while maintaining safety with respect to other aircraft as well as humans and property
on the ground. We propose to design a real-time, onboard system health management (SHM) capability to continuously
monitor essential system components such as sensors, software, and hardware systems for detection and diagnosis of failures and
violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1)
real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the-fly temporal and
Bayesian probabilistic fault diagnosis; (3) an unobtrusive, lightweight, read-only, low-power hardware realization using Field
Programmable Gate Arrays (FPGAs) in order to avoid overburdening limited computing resources or costly re-certification of
flight software due to instrumentation. No currently available SHM capabilities (or combinations of currently existing SHM
capabilities) come anywhere close to satisfying these three criteria yet NASA will require such intelligent, hardwareenabled
sensor and software safety and health management for introducing autonomous UAS into the National Airspace System (NAS).
We propose a novel approach of creating modular building blocks for combining responsive runtime monitoring of temporal logic
system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. Our proposed
research program includes both developing this novel approach and demonstrating its capabilities using the NASA Swift UAS as
a demonstration platform.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

STI Information Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

	Introduction
	Temporal-Logic Based Runtime Observer Pairs for System Health Management of Real-Time Systems RRS14
	Introduction
	Related Work
	Approach and Contributions

	Real-time projections of LTL
	Asynchronous and Synchronous Observers
	Asynchronous Observers
	Synchronous Observers

	Mapping Observers into Efficient Hardware
	Synthesizing a Configuration for the rt-R2U2
	Circuit Size and Depth Complexity Results

	Applying the rt-R2U2 to NASA's Swift UAS
	Conclusion

	Runtime Observer Pairs and Bayesian Network Reasoners On-board FPGAs: Flight-Certifiable System Health Management for Embedded Systems GRS14
	Introduction
	Related Work
	Contributions

	Preliminaries
	Temporal-Logic Based Runtime Observer Pairs RRS14
	Bayesian Networks for Health Models
	Digital Design 101 and FPGAs

	System Overview
	Software
	Hardware

	FPGA implementation of MTL/mission-time LTL
	FPGA implementation of Bayesian Networks
	Case Study: Fluxgate Magnetometer Buffer Overflow
	The Bayesian Health Model

	Conclusion

	UAS Platforms and Integration
	Architecture and Implementation
	Initial Work: Swift UAS and Beyond
	Arduino-based DragonEye
	Hardware Components for rt-R2U2
	Instrumentation of Flight Software

	Risk Analysis
	Risks and Mitigation—Introduction
	Intended Flight Profiles
	Structure of Risks

	Hardware Integration
	Initial Flight Tests
	Results of Initial Stand Flight Tests

	Conclusion
	Proofs of Correctness
	Proofs of Complexity Results
	Simulation Results
	Detailed Risk Analysis
	Risks and Mitigation—Mechanical
	Risks and Mitigation—Power
	Risks and Mitigation—Thermal
	Risks and Mitigation—EMI and Signal Interference
	Risks and Mitigation—FSW Interference
	Risks and Mitigation—Operational

	Software Annotations for ArduPlane
	Modified Files

	List of Publications and Presentations
	Publications
	Presentations

